Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+7x+10=0
Divide both sides by 4.
a+b=7 ab=1\times 10=10
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+10. To find a and b, set up a system to be solved.
1,10 2,5
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 10.
1+10=11 2+5=7
Calculate the sum for each pair.
a=2 b=5
The solution is the pair that gives sum 7.
\left(x^{2}+2x\right)+\left(5x+10\right)
Rewrite x^{2}+7x+10 as \left(x^{2}+2x\right)+\left(5x+10\right).
x\left(x+2\right)+5\left(x+2\right)
Factor out x in the first and 5 in the second group.
\left(x+2\right)\left(x+5\right)
Factor out common term x+2 by using distributive property.
x=-2 x=-5
To find equation solutions, solve x+2=0 and x+5=0.
4x^{2}+28x+40=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-28±\sqrt{28^{2}-4\times 4\times 40}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 28 for b, and 40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±\sqrt{784-4\times 4\times 40}}{2\times 4}
Square 28.
x=\frac{-28±\sqrt{784-16\times 40}}{2\times 4}
Multiply -4 times 4.
x=\frac{-28±\sqrt{784-640}}{2\times 4}
Multiply -16 times 40.
x=\frac{-28±\sqrt{144}}{2\times 4}
Add 784 to -640.
x=\frac{-28±12}{2\times 4}
Take the square root of 144.
x=\frac{-28±12}{8}
Multiply 2 times 4.
x=-\frac{16}{8}
Now solve the equation x=\frac{-28±12}{8} when ± is plus. Add -28 to 12.
x=-2
Divide -16 by 8.
x=-\frac{40}{8}
Now solve the equation x=\frac{-28±12}{8} when ± is minus. Subtract 12 from -28.
x=-5
Divide -40 by 8.
x=-2 x=-5
The equation is now solved.
4x^{2}+28x+40=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}+28x+40-40=-40
Subtract 40 from both sides of the equation.
4x^{2}+28x=-40
Subtracting 40 from itself leaves 0.
\frac{4x^{2}+28x}{4}=-\frac{40}{4}
Divide both sides by 4.
x^{2}+\frac{28}{4}x=-\frac{40}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+7x=-\frac{40}{4}
Divide 28 by 4.
x^{2}+7x=-10
Divide -40 by 4.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=-10+\left(\frac{7}{2}\right)^{2}
Divide 7, the coefficient of the x term, by 2 to get \frac{7}{2}. Then add the square of \frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+7x+\frac{49}{4}=-10+\frac{49}{4}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+7x+\frac{49}{4}=\frac{9}{4}
Add -10 to \frac{49}{4}.
\left(x+\frac{7}{2}\right)^{2}=\frac{9}{4}
Factor x^{2}+7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
x+\frac{7}{2}=\frac{3}{2} x+\frac{7}{2}=-\frac{3}{2}
Simplify.
x=-2 x=-5
Subtract \frac{7}{2} from both sides of the equation.
x ^ 2 +7x +10 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 4
r + s = -7 rs = 10
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{7}{2} - u s = -\frac{7}{2} + u
Two numbers r and s sum up to -7 exactly when the average of the two numbers is \frac{1}{2}*-7 = -\frac{7}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{7}{2} - u) (-\frac{7}{2} + u) = 10
To solve for unknown quantity u, substitute these in the product equation rs = 10
\frac{49}{4} - u^2 = 10
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 10-\frac{49}{4} = -\frac{9}{4}
Simplify the expression by subtracting \frac{49}{4} on both sides
u^2 = \frac{9}{4} u = \pm\sqrt{\frac{9}{4}} = \pm \frac{3}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{7}{2} - \frac{3}{2} = -5 s = -\frac{7}{2} + \frac{3}{2} = -2
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.