Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+24x=4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4x^{2}+24x-4=4-4
Subtract 4 from both sides of the equation.
4x^{2}+24x-4=0
Subtracting 4 from itself leaves 0.
x=\frac{-24±\sqrt{24^{2}-4\times 4\left(-4\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 24 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24±\sqrt{576-4\times 4\left(-4\right)}}{2\times 4}
Square 24.
x=\frac{-24±\sqrt{576-16\left(-4\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-24±\sqrt{576+64}}{2\times 4}
Multiply -16 times -4.
x=\frac{-24±\sqrt{640}}{2\times 4}
Add 576 to 64.
x=\frac{-24±8\sqrt{10}}{2\times 4}
Take the square root of 640.
x=\frac{-24±8\sqrt{10}}{8}
Multiply 2 times 4.
x=\frac{8\sqrt{10}-24}{8}
Now solve the equation x=\frac{-24±8\sqrt{10}}{8} when ± is plus. Add -24 to 8\sqrt{10}.
x=\sqrt{10}-3
Divide -24+8\sqrt{10} by 8.
x=\frac{-8\sqrt{10}-24}{8}
Now solve the equation x=\frac{-24±8\sqrt{10}}{8} when ± is minus. Subtract 8\sqrt{10} from -24.
x=-\sqrt{10}-3
Divide -24-8\sqrt{10} by 8.
x=\sqrt{10}-3 x=-\sqrt{10}-3
The equation is now solved.
4x^{2}+24x=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}+24x}{4}=\frac{4}{4}
Divide both sides by 4.
x^{2}+\frac{24}{4}x=\frac{4}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+6x=\frac{4}{4}
Divide 24 by 4.
x^{2}+6x=1
Divide 4 by 4.
x^{2}+6x+3^{2}=1+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=1+9
Square 3.
x^{2}+6x+9=10
Add 1 to 9.
\left(x+3\right)^{2}=10
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{10}
Take the square root of both sides of the equation.
x+3=\sqrt{10} x+3=-\sqrt{10}
Simplify.
x=\sqrt{10}-3 x=-\sqrt{10}-3
Subtract 3 from both sides of the equation.
4x^{2}+24x=4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4x^{2}+24x-4=4-4
Subtract 4 from both sides of the equation.
4x^{2}+24x-4=0
Subtracting 4 from itself leaves 0.
x=\frac{-24±\sqrt{24^{2}-4\times 4\left(-4\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 24 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24±\sqrt{576-4\times 4\left(-4\right)}}{2\times 4}
Square 24.
x=\frac{-24±\sqrt{576-16\left(-4\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-24±\sqrt{576+64}}{2\times 4}
Multiply -16 times -4.
x=\frac{-24±\sqrt{640}}{2\times 4}
Add 576 to 64.
x=\frac{-24±8\sqrt{10}}{2\times 4}
Take the square root of 640.
x=\frac{-24±8\sqrt{10}}{8}
Multiply 2 times 4.
x=\frac{8\sqrt{10}-24}{8}
Now solve the equation x=\frac{-24±8\sqrt{10}}{8} when ± is plus. Add -24 to 8\sqrt{10}.
x=\sqrt{10}-3
Divide -24+8\sqrt{10} by 8.
x=\frac{-8\sqrt{10}-24}{8}
Now solve the equation x=\frac{-24±8\sqrt{10}}{8} when ± is minus. Subtract 8\sqrt{10} from -24.
x=-\sqrt{10}-3
Divide -24-8\sqrt{10} by 8.
x=\sqrt{10}-3 x=-\sqrt{10}-3
The equation is now solved.
4x^{2}+24x=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}+24x}{4}=\frac{4}{4}
Divide both sides by 4.
x^{2}+\frac{24}{4}x=\frac{4}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+6x=\frac{4}{4}
Divide 24 by 4.
x^{2}+6x=1
Divide 4 by 4.
x^{2}+6x+3^{2}=1+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=1+9
Square 3.
x^{2}+6x+9=10
Add 1 to 9.
\left(x+3\right)^{2}=10
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{10}
Take the square root of both sides of the equation.
x+3=\sqrt{10} x+3=-\sqrt{10}
Simplify.
x=\sqrt{10}-3 x=-\sqrt{10}-3
Subtract 3 from both sides of the equation.