Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+20x=2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4x^{2}+20x-2=2-2
Subtract 2 from both sides of the equation.
4x^{2}+20x-2=0
Subtracting 2 from itself leaves 0.
x=\frac{-20±\sqrt{20^{2}-4\times 4\left(-2\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 20 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\times 4\left(-2\right)}}{2\times 4}
Square 20.
x=\frac{-20±\sqrt{400-16\left(-2\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-20±\sqrt{400+32}}{2\times 4}
Multiply -16 times -2.
x=\frac{-20±\sqrt{432}}{2\times 4}
Add 400 to 32.
x=\frac{-20±12\sqrt{3}}{2\times 4}
Take the square root of 432.
x=\frac{-20±12\sqrt{3}}{8}
Multiply 2 times 4.
x=\frac{12\sqrt{3}-20}{8}
Now solve the equation x=\frac{-20±12\sqrt{3}}{8} when ± is plus. Add -20 to 12\sqrt{3}.
x=\frac{3\sqrt{3}-5}{2}
Divide -20+12\sqrt{3} by 8.
x=\frac{-12\sqrt{3}-20}{8}
Now solve the equation x=\frac{-20±12\sqrt{3}}{8} when ± is minus. Subtract 12\sqrt{3} from -20.
x=\frac{-3\sqrt{3}-5}{2}
Divide -20-12\sqrt{3} by 8.
x=\frac{3\sqrt{3}-5}{2} x=\frac{-3\sqrt{3}-5}{2}
The equation is now solved.
4x^{2}+20x=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}+20x}{4}=\frac{2}{4}
Divide both sides by 4.
x^{2}+\frac{20}{4}x=\frac{2}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+5x=\frac{2}{4}
Divide 20 by 4.
x^{2}+5x=\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=\frac{1}{2}+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=\frac{1}{2}+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{27}{4}
Add \frac{1}{2} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{2}\right)^{2}=\frac{27}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{27}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{3\sqrt{3}}{2} x+\frac{5}{2}=-\frac{3\sqrt{3}}{2}
Simplify.
x=\frac{3\sqrt{3}-5}{2} x=\frac{-3\sqrt{3}-5}{2}
Subtract \frac{5}{2} from both sides of the equation.