Evaluate
\frac{\left(4x+y\right)^{2}}{4}
Factor
\frac{\left(4x+y\right)^{2}}{4}
Share
Copied to clipboard
\frac{4\left(4x^{2}+2xy\right)}{4}+\frac{y^{2}}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4x^{2}+2xy times \frac{4}{4}.
\frac{4\left(4x^{2}+2xy\right)+y^{2}}{4}
Since \frac{4\left(4x^{2}+2xy\right)}{4} and \frac{y^{2}}{4} have the same denominator, add them by adding their numerators.
\frac{16x^{2}+8xy+y^{2}}{4}
Do the multiplications in 4\left(4x^{2}+2xy\right)+y^{2}.
\frac{16x^{2}+8xy+y^{2}}{4}
Factor out \frac{1}{4}.
\left(4x+y\right)^{2}
Consider 16x^{2}+8xy+y^{2}. Use the perfect square formula, a^{2}+2ab+b^{2}=\left(a+b\right)^{2}, where a=4x and b=y.
\frac{\left(4x+y\right)^{2}}{4}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}