Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+14x-12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-14±\sqrt{14^{2}-4\times 4\left(-12\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-14±\sqrt{196-4\times 4\left(-12\right)}}{2\times 4}
Square 14.
x=\frac{-14±\sqrt{196-16\left(-12\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-14±\sqrt{196+192}}{2\times 4}
Multiply -16 times -12.
x=\frac{-14±\sqrt{388}}{2\times 4}
Add 196 to 192.
x=\frac{-14±2\sqrt{97}}{2\times 4}
Take the square root of 388.
x=\frac{-14±2\sqrt{97}}{8}
Multiply 2 times 4.
x=\frac{2\sqrt{97}-14}{8}
Now solve the equation x=\frac{-14±2\sqrt{97}}{8} when ± is plus. Add -14 to 2\sqrt{97}.
x=\frac{\sqrt{97}-7}{4}
Divide -14+2\sqrt{97} by 8.
x=\frac{-2\sqrt{97}-14}{8}
Now solve the equation x=\frac{-14±2\sqrt{97}}{8} when ± is minus. Subtract 2\sqrt{97} from -14.
x=\frac{-\sqrt{97}-7}{4}
Divide -14-2\sqrt{97} by 8.
4x^{2}+14x-12=4\left(x-\frac{\sqrt{97}-7}{4}\right)\left(x-\frac{-\sqrt{97}-7}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-7+\sqrt{97}}{4} for x_{1} and \frac{-7-\sqrt{97}}{4} for x_{2}.
x ^ 2 +\frac{7}{2}x -3 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 4
r + s = -\frac{7}{2} rs = -3
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{7}{4} - u s = -\frac{7}{4} + u
Two numbers r and s sum up to -\frac{7}{2} exactly when the average of the two numbers is \frac{1}{2}*-\frac{7}{2} = -\frac{7}{4}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{7}{4} - u) (-\frac{7}{4} + u) = -3
To solve for unknown quantity u, substitute these in the product equation rs = -3
\frac{49}{16} - u^2 = -3
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -3-\frac{49}{16} = -\frac{97}{16}
Simplify the expression by subtracting \frac{49}{16} on both sides
u^2 = \frac{97}{16} u = \pm\sqrt{\frac{97}{16}} = \pm \frac{\sqrt{97}}{4}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{7}{4} - \frac{\sqrt{97}}{4} = -4.212 s = -\frac{7}{4} + \frac{\sqrt{97}}{4} = 0.712
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.