Solve for x
x=-4
x = \frac{5}{4} = 1\frac{1}{4} = 1.25
Graph
Share
Copied to clipboard
a+b=11 ab=4\left(-20\right)=-80
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx-20. To find a and b, set up a system to be solved.
-1,80 -2,40 -4,20 -5,16 -8,10
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -80.
-1+80=79 -2+40=38 -4+20=16 -5+16=11 -8+10=2
Calculate the sum for each pair.
a=-5 b=16
The solution is the pair that gives sum 11.
\left(4x^{2}-5x\right)+\left(16x-20\right)
Rewrite 4x^{2}+11x-20 as \left(4x^{2}-5x\right)+\left(16x-20\right).
x\left(4x-5\right)+4\left(4x-5\right)
Factor out x in the first and 4 in the second group.
\left(4x-5\right)\left(x+4\right)
Factor out common term 4x-5 by using distributive property.
x=\frac{5}{4} x=-4
To find equation solutions, solve 4x-5=0 and x+4=0.
4x^{2}+11x-20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-11±\sqrt{11^{2}-4\times 4\left(-20\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 11 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\times 4\left(-20\right)}}{2\times 4}
Square 11.
x=\frac{-11±\sqrt{121-16\left(-20\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-11±\sqrt{121+320}}{2\times 4}
Multiply -16 times -20.
x=\frac{-11±\sqrt{441}}{2\times 4}
Add 121 to 320.
x=\frac{-11±21}{2\times 4}
Take the square root of 441.
x=\frac{-11±21}{8}
Multiply 2 times 4.
x=\frac{10}{8}
Now solve the equation x=\frac{-11±21}{8} when ± is plus. Add -11 to 21.
x=\frac{5}{4}
Reduce the fraction \frac{10}{8} to lowest terms by extracting and canceling out 2.
x=-\frac{32}{8}
Now solve the equation x=\frac{-11±21}{8} when ± is minus. Subtract 21 from -11.
x=-4
Divide -32 by 8.
x=\frac{5}{4} x=-4
The equation is now solved.
4x^{2}+11x-20=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}+11x-20-\left(-20\right)=-\left(-20\right)
Add 20 to both sides of the equation.
4x^{2}+11x=-\left(-20\right)
Subtracting -20 from itself leaves 0.
4x^{2}+11x=20
Subtract -20 from 0.
\frac{4x^{2}+11x}{4}=\frac{20}{4}
Divide both sides by 4.
x^{2}+\frac{11}{4}x=\frac{20}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{11}{4}x=5
Divide 20 by 4.
x^{2}+\frac{11}{4}x+\left(\frac{11}{8}\right)^{2}=5+\left(\frac{11}{8}\right)^{2}
Divide \frac{11}{4}, the coefficient of the x term, by 2 to get \frac{11}{8}. Then add the square of \frac{11}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{11}{4}x+\frac{121}{64}=5+\frac{121}{64}
Square \frac{11}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{11}{4}x+\frac{121}{64}=\frac{441}{64}
Add 5 to \frac{121}{64}.
\left(x+\frac{11}{8}\right)^{2}=\frac{441}{64}
Factor x^{2}+\frac{11}{4}x+\frac{121}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{8}\right)^{2}}=\sqrt{\frac{441}{64}}
Take the square root of both sides of the equation.
x+\frac{11}{8}=\frac{21}{8} x+\frac{11}{8}=-\frac{21}{8}
Simplify.
x=\frac{5}{4} x=-4
Subtract \frac{11}{8} from both sides of the equation.
x ^ 2 +\frac{11}{4}x -5 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 4
r + s = -\frac{11}{4} rs = -5
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{11}{8} - u s = -\frac{11}{8} + u
Two numbers r and s sum up to -\frac{11}{4} exactly when the average of the two numbers is \frac{1}{2}*-\frac{11}{4} = -\frac{11}{8}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{11}{8} - u) (-\frac{11}{8} + u) = -5
To solve for unknown quantity u, substitute these in the product equation rs = -5
\frac{121}{64} - u^2 = -5
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -5-\frac{121}{64} = -\frac{441}{64}
Simplify the expression by subtracting \frac{121}{64} on both sides
u^2 = \frac{441}{64} u = \pm\sqrt{\frac{441}{64}} = \pm \frac{21}{8}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{11}{8} - \frac{21}{8} = -4 s = -\frac{11}{8} + \frac{21}{8} = 1.250
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}