Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+\frac{1}{3}x+13=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{1}{3}±\sqrt{\left(\frac{1}{3}\right)^{2}-4\times 4\times 13}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, \frac{1}{3} for b, and 13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{3}±\sqrt{\frac{1}{9}-4\times 4\times 13}}{2\times 4}
Square \frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1}{3}±\sqrt{\frac{1}{9}-16\times 13}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\frac{1}{3}±\sqrt{\frac{1}{9}-208}}{2\times 4}
Multiply -16 times 13.
x=\frac{-\frac{1}{3}±\sqrt{-\frac{1871}{9}}}{2\times 4}
Add \frac{1}{9} to -208.
x=\frac{-\frac{1}{3}±\frac{\sqrt{1871}i}{3}}{2\times 4}
Take the square root of -\frac{1871}{9}.
x=\frac{-\frac{1}{3}±\frac{\sqrt{1871}i}{3}}{8}
Multiply 2 times 4.
x=\frac{-1+\sqrt{1871}i}{3\times 8}
Now solve the equation x=\frac{-\frac{1}{3}±\frac{\sqrt{1871}i}{3}}{8} when ± is plus. Add -\frac{1}{3} to \frac{i\sqrt{1871}}{3}.
x=\frac{-1+\sqrt{1871}i}{24}
Divide \frac{-1+i\sqrt{1871}}{3} by 8.
x=\frac{-\sqrt{1871}i-1}{3\times 8}
Now solve the equation x=\frac{-\frac{1}{3}±\frac{\sqrt{1871}i}{3}}{8} when ± is minus. Subtract \frac{i\sqrt{1871}}{3} from -\frac{1}{3}.
x=\frac{-\sqrt{1871}i-1}{24}
Divide \frac{-1-i\sqrt{1871}}{3} by 8.
x=\frac{-1+\sqrt{1871}i}{24} x=\frac{-\sqrt{1871}i-1}{24}
The equation is now solved.
4x^{2}+\frac{1}{3}x+13=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}+\frac{1}{3}x+13-13=-13
Subtract 13 from both sides of the equation.
4x^{2}+\frac{1}{3}x=-13
Subtracting 13 from itself leaves 0.
\frac{4x^{2}+\frac{1}{3}x}{4}=-\frac{13}{4}
Divide both sides by 4.
x^{2}+\frac{\frac{1}{3}}{4}x=-\frac{13}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{1}{12}x=-\frac{13}{4}
Divide \frac{1}{3} by 4.
x^{2}+\frac{1}{12}x+\left(\frac{1}{24}\right)^{2}=-\frac{13}{4}+\left(\frac{1}{24}\right)^{2}
Divide \frac{1}{12}, the coefficient of the x term, by 2 to get \frac{1}{24}. Then add the square of \frac{1}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{12}x+\frac{1}{576}=-\frac{13}{4}+\frac{1}{576}
Square \frac{1}{24} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{12}x+\frac{1}{576}=-\frac{1871}{576}
Add -\frac{13}{4} to \frac{1}{576} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{24}\right)^{2}=-\frac{1871}{576}
Factor x^{2}+\frac{1}{12}x+\frac{1}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{24}\right)^{2}}=\sqrt{-\frac{1871}{576}}
Take the square root of both sides of the equation.
x+\frac{1}{24}=\frac{\sqrt{1871}i}{24} x+\frac{1}{24}=-\frac{\sqrt{1871}i}{24}
Simplify.
x=\frac{-1+\sqrt{1871}i}{24} x=\frac{-\sqrt{1871}i-1}{24}
Subtract \frac{1}{24} from both sides of the equation.