Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{-\frac{13}{3}}\times 4x^{\frac{-1}{2}}
To multiply powers of the same base, add their exponents. Add -\frac{1}{3} and -4 to get -\frac{13}{3}.
16x^{-\frac{13}{3}}x^{\frac{-1}{2}}
Multiply 4 and 4 to get 16.
16x^{-\frac{13}{3}}x^{-\frac{1}{2}}
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
16x^{-\frac{29}{6}}
To multiply powers of the same base, add their exponents. Add -\frac{13}{3} and -\frac{1}{2} to get -\frac{29}{6}.
\frac{\mathrm{d}}{\mathrm{d}x}(4x^{-\frac{13}{3}}\times 4x^{\frac{-1}{2}})
To multiply powers of the same base, add their exponents. Add -\frac{1}{3} and -4 to get -\frac{13}{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(16x^{-\frac{13}{3}}x^{\frac{-1}{2}})
Multiply 4 and 4 to get 16.
\frac{\mathrm{d}}{\mathrm{d}x}(16x^{-\frac{13}{3}}x^{-\frac{1}{2}})
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}x}(16x^{-\frac{29}{6}})
To multiply powers of the same base, add their exponents. Add -\frac{13}{3} and -\frac{1}{2} to get -\frac{29}{6}.
-\frac{29}{6}\times 16x^{-\frac{29}{6}-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{232}{3}x^{-\frac{29}{6}-1}
Multiply -\frac{29}{6} times 16.
-\frac{232}{3}x^{-\frac{35}{6}}
Subtract 1 from -\frac{29}{6}.