Evaluate
\frac{16}{x^{\frac{29}{6}}}
Differentiate w.r.t. x
-\frac{232}{3x^{\frac{35}{6}}}
Graph
Share
Copied to clipboard
4x^{-\frac{13}{3}}\times 4x^{\frac{-1}{2}}
To multiply powers of the same base, add their exponents. Add -\frac{1}{3} and -4 to get -\frac{13}{3}.
16x^{-\frac{13}{3}}x^{\frac{-1}{2}}
Multiply 4 and 4 to get 16.
16x^{-\frac{13}{3}}x^{-\frac{1}{2}}
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
16x^{-\frac{29}{6}}
To multiply powers of the same base, add their exponents. Add -\frac{13}{3} and -\frac{1}{2} to get -\frac{29}{6}.
\frac{\mathrm{d}}{\mathrm{d}x}(4x^{-\frac{13}{3}}\times 4x^{\frac{-1}{2}})
To multiply powers of the same base, add their exponents. Add -\frac{1}{3} and -4 to get -\frac{13}{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(16x^{-\frac{13}{3}}x^{\frac{-1}{2}})
Multiply 4 and 4 to get 16.
\frac{\mathrm{d}}{\mathrm{d}x}(16x^{-\frac{13}{3}}x^{-\frac{1}{2}})
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}x}(16x^{-\frac{29}{6}})
To multiply powers of the same base, add their exponents. Add -\frac{13}{3} and -\frac{1}{2} to get -\frac{29}{6}.
-\frac{29}{6}\times 16x^{-\frac{29}{6}-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{232}{3}x^{-\frac{29}{6}-1}
Multiply -\frac{29}{6} times 16.
-\frac{232}{3}x^{-\frac{35}{6}}
Subtract 1 from -\frac{29}{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}