Solve for a
\left\{\begin{matrix}a=\frac{x\left(z+4\right)}{y}\text{, }&y\neq 0\\a\in \mathrm{R}\text{, }&\left(x=0\text{ or }z=-4\right)\text{ and }y=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{ay}{z+4}\text{, }&z\neq -4\\x\in \mathrm{R}\text{, }&\left(a=0\text{ or }y=0\right)\text{ and }z=-4\end{matrix}\right.
Share
Copied to clipboard
ay-zx=4x
Swap sides so that all variable terms are on the left hand side.
ay=4x+zx
Add zx to both sides.
ya=xz+4x
The equation is in standard form.
\frac{ya}{y}=\frac{x\left(z+4\right)}{y}
Divide both sides by y.
a=\frac{x\left(z+4\right)}{y}
Dividing by y undoes the multiplication by y.
4x+zx=ay
Add zx to both sides.
\left(4+z\right)x=ay
Combine all terms containing x.
\left(z+4\right)x=ay
The equation is in standard form.
\frac{\left(z+4\right)x}{z+4}=\frac{ay}{z+4}
Divide both sides by 4+z.
x=\frac{ay}{z+4}
Dividing by 4+z undoes the multiplication by 4+z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}