4 x = 32 - 18 x + 12 ( R
Solve for R
R=\frac{11x}{6}-\frac{8}{3}
Solve for x
x=\frac{6R+16}{11}
Graph
Share
Copied to clipboard
32-18x+12R=4x
Swap sides so that all variable terms are on the left hand side.
-18x+12R=4x-32
Subtract 32 from both sides.
12R=4x-32+18x
Add 18x to both sides.
12R=22x-32
Combine 4x and 18x to get 22x.
\frac{12R}{12}=\frac{22x-32}{12}
Divide both sides by 12.
R=\frac{22x-32}{12}
Dividing by 12 undoes the multiplication by 12.
R=\frac{11x}{6}-\frac{8}{3}
Divide 22x-32 by 12.
4x+18x=32+12R
Add 18x to both sides.
22x=32+12R
Combine 4x and 18x to get 22x.
22x=12R+32
The equation is in standard form.
\frac{22x}{22}=\frac{12R+32}{22}
Divide both sides by 22.
x=\frac{12R+32}{22}
Dividing by 22 undoes the multiplication by 22.
x=\frac{6R+16}{11}
Divide 32+12R by 22.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}