Solve for x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
\left(4x\right)^{2}=\left(\sqrt{30+4x}\right)^{2}
Square both sides of the equation.
4^{2}x^{2}=\left(\sqrt{30+4x}\right)^{2}
Expand \left(4x\right)^{2}.
16x^{2}=\left(\sqrt{30+4x}\right)^{2}
Calculate 4 to the power of 2 and get 16.
16x^{2}=30+4x
Calculate \sqrt{30+4x} to the power of 2 and get 30+4x.
16x^{2}-30=4x
Subtract 30 from both sides.
16x^{2}-30-4x=0
Subtract 4x from both sides.
8x^{2}-15-2x=0
Divide both sides by 2.
8x^{2}-2x-15=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-2 ab=8\left(-15\right)=-120
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 8x^{2}+ax+bx-15. To find a and b, set up a system to be solved.
1,-120 2,-60 3,-40 4,-30 5,-24 6,-20 8,-15 10,-12
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -120.
1-120=-119 2-60=-58 3-40=-37 4-30=-26 5-24=-19 6-20=-14 8-15=-7 10-12=-2
Calculate the sum for each pair.
a=-12 b=10
The solution is the pair that gives sum -2.
\left(8x^{2}-12x\right)+\left(10x-15\right)
Rewrite 8x^{2}-2x-15 as \left(8x^{2}-12x\right)+\left(10x-15\right).
4x\left(2x-3\right)+5\left(2x-3\right)
Factor out 4x in the first and 5 in the second group.
\left(2x-3\right)\left(4x+5\right)
Factor out common term 2x-3 by using distributive property.
x=\frac{3}{2} x=-\frac{5}{4}
To find equation solutions, solve 2x-3=0 and 4x+5=0.
4\times \frac{3}{2}=\sqrt{30+4\times \frac{3}{2}}
Substitute \frac{3}{2} for x in the equation 4x=\sqrt{30+4x}.
6=6
Simplify. The value x=\frac{3}{2} satisfies the equation.
4\left(-\frac{5}{4}\right)=\sqrt{30+4\left(-\frac{5}{4}\right)}
Substitute -\frac{5}{4} for x in the equation 4x=\sqrt{30+4x}.
-5=5
Simplify. The value x=-\frac{5}{4} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{3}{2}
Equation 4x=\sqrt{4x+30} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}