Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+4x+4=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=4 ab=4
To solve the equation, factor x^{2}+4x+4 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
1,4 2,2
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 4.
1+4=5 2+2=4
Calculate the sum for each pair.
a=2 b=2
The solution is the pair that gives sum 4.
\left(x+2\right)\left(x+2\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
\left(x+2\right)^{2}
Rewrite as a binomial square.
x=-2
To find equation solution, solve x+2=0.
x^{2}+4x+4=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=4 ab=1\times 4=4
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+4. To find a and b, set up a system to be solved.
1,4 2,2
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 4.
1+4=5 2+2=4
Calculate the sum for each pair.
a=2 b=2
The solution is the pair that gives sum 4.
\left(x^{2}+2x\right)+\left(2x+4\right)
Rewrite x^{2}+4x+4 as \left(x^{2}+2x\right)+\left(2x+4\right).
x\left(x+2\right)+2\left(x+2\right)
Factor out x in the first and 2 in the second group.
\left(x+2\right)\left(x+2\right)
Factor out common term x+2 by using distributive property.
\left(x+2\right)^{2}
Rewrite as a binomial square.
x=-2
To find equation solution, solve x+2=0.
x^{2}+4x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\times 4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 4}}{2}
Square 4.
x=\frac{-4±\sqrt{16-16}}{2}
Multiply -4 times 4.
x=\frac{-4±\sqrt{0}}{2}
Add 16 to -16.
x=-\frac{4}{2}
Take the square root of 0.
x=-2
Divide -4 by 2.
x^{2}+4x+4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\left(x+2\right)^{2}=0
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x+2=0 x+2=0
Simplify.
x=-2 x=-2
Subtract 2 from both sides of the equation.
x=-2
The equation is now solved. Solutions are the same.