Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(2x+3x^{2}-8\right)
Factor out 2.
3x^{2}+2x-8
Consider 2x+3x^{2}-8. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=2 ab=3\left(-8\right)=-24
Factor the expression by grouping. First, the expression needs to be rewritten as 3x^{2}+ax+bx-8. To find a and b, set up a system to be solved.
-1,24 -2,12 -3,8 -4,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Calculate the sum for each pair.
a=-4 b=6
The solution is the pair that gives sum 2.
\left(3x^{2}-4x\right)+\left(6x-8\right)
Rewrite 3x^{2}+2x-8 as \left(3x^{2}-4x\right)+\left(6x-8\right).
x\left(3x-4\right)+2\left(3x-4\right)
Factor out x in the first and 2 in the second group.
\left(3x-4\right)\left(x+2\right)
Factor out common term 3x-4 by using distributive property.
2\left(3x-4\right)\left(x+2\right)
Rewrite the complete factored expression.
6x^{2}+4x-16=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\times 6\left(-16\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{16-4\times 6\left(-16\right)}}{2\times 6}
Square 4.
x=\frac{-4±\sqrt{16-24\left(-16\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-4±\sqrt{16+384}}{2\times 6}
Multiply -24 times -16.
x=\frac{-4±\sqrt{400}}{2\times 6}
Add 16 to 384.
x=\frac{-4±20}{2\times 6}
Take the square root of 400.
x=\frac{-4±20}{12}
Multiply 2 times 6.
x=\frac{16}{12}
Now solve the equation x=\frac{-4±20}{12} when ± is plus. Add -4 to 20.
x=\frac{4}{3}
Reduce the fraction \frac{16}{12} to lowest terms by extracting and canceling out 4.
x=-\frac{24}{12}
Now solve the equation x=\frac{-4±20}{12} when ± is minus. Subtract 20 from -4.
x=-2
Divide -24 by 12.
6x^{2}+4x-16=6\left(x-\frac{4}{3}\right)\left(x-\left(-2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{4}{3} for x_{1} and -2 for x_{2}.
6x^{2}+4x-16=6\left(x-\frac{4}{3}\right)\left(x+2\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
6x^{2}+4x-16=6\times \frac{3x-4}{3}\left(x+2\right)
Subtract \frac{4}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
6x^{2}+4x-16=2\left(3x-4\right)\left(x+2\right)
Cancel out 3, the greatest common factor in 6 and 3.