Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x+5+x^{2}-2x=6-104x^{2}
Subtract 2x from both sides.
2x+5+x^{2}=6-104x^{2}
Combine 4x and -2x to get 2x.
2x+5+x^{2}-6=-104x^{2}
Subtract 6 from both sides.
2x-1+x^{2}=-104x^{2}
Subtract 6 from 5 to get -1.
2x-1+x^{2}+104x^{2}=0
Add 104x^{2} to both sides.
2x-1+105x^{2}=0
Combine x^{2} and 104x^{2} to get 105x^{2}.
105x^{2}+2x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\times 105\left(-1\right)}}{2\times 105}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 105 for a, 2 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 105\left(-1\right)}}{2\times 105}
Square 2.
x=\frac{-2±\sqrt{4-420\left(-1\right)}}{2\times 105}
Multiply -4 times 105.
x=\frac{-2±\sqrt{4+420}}{2\times 105}
Multiply -420 times -1.
x=\frac{-2±\sqrt{424}}{2\times 105}
Add 4 to 420.
x=\frac{-2±2\sqrt{106}}{2\times 105}
Take the square root of 424.
x=\frac{-2±2\sqrt{106}}{210}
Multiply 2 times 105.
x=\frac{2\sqrt{106}-2}{210}
Now solve the equation x=\frac{-2±2\sqrt{106}}{210} when ± is plus. Add -2 to 2\sqrt{106}.
x=\frac{\sqrt{106}-1}{105}
Divide -2+2\sqrt{106} by 210.
x=\frac{-2\sqrt{106}-2}{210}
Now solve the equation x=\frac{-2±2\sqrt{106}}{210} when ± is minus. Subtract 2\sqrt{106} from -2.
x=\frac{-\sqrt{106}-1}{105}
Divide -2-2\sqrt{106} by 210.
x=\frac{\sqrt{106}-1}{105} x=\frac{-\sqrt{106}-1}{105}
The equation is now solved.
4x+5+x^{2}-2x=6-104x^{2}
Subtract 2x from both sides.
2x+5+x^{2}=6-104x^{2}
Combine 4x and -2x to get 2x.
2x+5+x^{2}+104x^{2}=6
Add 104x^{2} to both sides.
2x+5+105x^{2}=6
Combine x^{2} and 104x^{2} to get 105x^{2}.
2x+105x^{2}=6-5
Subtract 5 from both sides.
2x+105x^{2}=1
Subtract 5 from 6 to get 1.
105x^{2}+2x=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{105x^{2}+2x}{105}=\frac{1}{105}
Divide both sides by 105.
x^{2}+\frac{2}{105}x=\frac{1}{105}
Dividing by 105 undoes the multiplication by 105.
x^{2}+\frac{2}{105}x+\left(\frac{1}{105}\right)^{2}=\frac{1}{105}+\left(\frac{1}{105}\right)^{2}
Divide \frac{2}{105}, the coefficient of the x term, by 2 to get \frac{1}{105}. Then add the square of \frac{1}{105} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{105}x+\frac{1}{11025}=\frac{1}{105}+\frac{1}{11025}
Square \frac{1}{105} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{105}x+\frac{1}{11025}=\frac{106}{11025}
Add \frac{1}{105} to \frac{1}{11025} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{105}\right)^{2}=\frac{106}{11025}
Factor x^{2}+\frac{2}{105}x+\frac{1}{11025}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{105}\right)^{2}}=\sqrt{\frac{106}{11025}}
Take the square root of both sides of the equation.
x+\frac{1}{105}=\frac{\sqrt{106}}{105} x+\frac{1}{105}=-\frac{\sqrt{106}}{105}
Simplify.
x=\frac{\sqrt{106}-1}{105} x=\frac{-\sqrt{106}-1}{105}
Subtract \frac{1}{105} from both sides of the equation.