Solve for x, y
x = \frac{27}{16} = 1\frac{11}{16} = 1.6875
y = \frac{11}{4} = 2\frac{3}{4} = 2.75
Graph
Share
Copied to clipboard
-4y=-8-3
Consider the second equation. Subtract 3 from both sides.
-4y=-11
Subtract 3 from -8 to get -11.
y=\frac{-11}{-4}
Divide both sides by -4.
y=\frac{11}{4}
Fraction \frac{-11}{-4} can be simplified to \frac{11}{4} by removing the negative sign from both the numerator and the denominator.
4x+3\times \frac{11}{4}=15
Consider the first equation. Insert the known values of variables into the equation.
4x+\frac{33}{4}=15
Multiply 3 and \frac{11}{4} to get \frac{33}{4}.
4x=15-\frac{33}{4}
Subtract \frac{33}{4} from both sides.
4x=\frac{27}{4}
Subtract \frac{33}{4} from 15 to get \frac{27}{4}.
x=\frac{\frac{27}{4}}{4}
Divide both sides by 4.
x=\frac{27}{4\times 4}
Express \frac{\frac{27}{4}}{4} as a single fraction.
x=\frac{27}{16}
Multiply 4 and 4 to get 16.
x=\frac{27}{16} y=\frac{11}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}