Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\sqrt{1-x^{2}}=-4x
Subtract 4x from both sides of the equation.
\left(3\sqrt{1-x^{2}}\right)^{2}=\left(-4x\right)^{2}
Square both sides of the equation.
3^{2}\left(\sqrt{1-x^{2}}\right)^{2}=\left(-4x\right)^{2}
Expand \left(3\sqrt{1-x^{2}}\right)^{2}.
9\left(\sqrt{1-x^{2}}\right)^{2}=\left(-4x\right)^{2}
Calculate 3 to the power of 2 and get 9.
9\left(1-x^{2}\right)=\left(-4x\right)^{2}
Calculate \sqrt{1-x^{2}} to the power of 2 and get 1-x^{2}.
9-9x^{2}=\left(-4x\right)^{2}
Use the distributive property to multiply 9 by 1-x^{2}.
9-9x^{2}=\left(-4\right)^{2}x^{2}
Expand \left(-4x\right)^{2}.
9-9x^{2}=16x^{2}
Calculate -4 to the power of 2 and get 16.
9-9x^{2}-16x^{2}=0
Subtract 16x^{2} from both sides.
9-25x^{2}=0
Combine -9x^{2} and -16x^{2} to get -25x^{2}.
-25x^{2}=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-9}{-25}
Divide both sides by -25.
x^{2}=\frac{9}{25}
Fraction \frac{-9}{-25} can be simplified to \frac{9}{25} by removing the negative sign from both the numerator and the denominator.
x=\frac{3}{5} x=-\frac{3}{5}
Take the square root of both sides of the equation.
4\times \frac{3}{5}+3\sqrt{1-\left(\frac{3}{5}\right)^{2}}=0
Substitute \frac{3}{5} for x in the equation 4x+3\sqrt{1-x^{2}}=0.
\frac{24}{5}=0
Simplify. The value x=\frac{3}{5} does not satisfy the equation.
4\left(-\frac{3}{5}\right)+3\sqrt{1-\left(-\frac{3}{5}\right)^{2}}=0
Substitute -\frac{3}{5} for x in the equation 4x+3\sqrt{1-x^{2}}=0.
0=0
Simplify. The value x=-\frac{3}{5} satisfies the equation.
x=-\frac{3}{5}
Equation 3\sqrt{1-x^{2}}=-4x has a unique solution.