Solve for x
x = -\frac{20}{9} = -2\frac{2}{9} \approx -2.222222222
Graph
Share
Copied to clipboard
-24x-6\times 3^{2}=\frac{2}{-3}
Multiply both sides of the equation by -6.
-24x-6\times 9=\frac{2}{-3}
Calculate 3 to the power of 2 and get 9.
-24x-54=\frac{2}{-3}
Multiply -6 and 9 to get -54.
-24x-54=-\frac{2}{3}
Fraction \frac{2}{-3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
-24x=-\frac{2}{3}+54
Add 54 to both sides.
-24x=-\frac{2}{3}+\frac{162}{3}
Convert 54 to fraction \frac{162}{3}.
-24x=\frac{-2+162}{3}
Since -\frac{2}{3} and \frac{162}{3} have the same denominator, add them by adding their numerators.
-24x=\frac{160}{3}
Add -2 and 162 to get 160.
x=\frac{\frac{160}{3}}{-24}
Divide both sides by -24.
x=\frac{160}{3\left(-24\right)}
Express \frac{\frac{160}{3}}{-24} as a single fraction.
x=\frac{160}{-72}
Multiply 3 and -24 to get -72.
x=-\frac{20}{9}
Reduce the fraction \frac{160}{-72} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}