Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x+2y=51,13x+15y=221
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x+2y=51
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
4x=-2y+51
Subtract 2y from both sides of the equation.
x=\frac{1}{4}\left(-2y+51\right)
Divide both sides by 4.
x=-\frac{1}{2}y+\frac{51}{4}
Multiply \frac{1}{4} times -2y+51.
13\left(-\frac{1}{2}y+\frac{51}{4}\right)+15y=221
Substitute -\frac{y}{2}+\frac{51}{4} for x in the other equation, 13x+15y=221.
-\frac{13}{2}y+\frac{663}{4}+15y=221
Multiply 13 times -\frac{y}{2}+\frac{51}{4}.
\frac{17}{2}y+\frac{663}{4}=221
Add -\frac{13y}{2} to 15y.
\frac{17}{2}y=\frac{221}{4}
Subtract \frac{663}{4} from both sides of the equation.
y=\frac{13}{2}
Divide both sides of the equation by \frac{17}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{1}{2}\times \frac{13}{2}+\frac{51}{4}
Substitute \frac{13}{2} for y in x=-\frac{1}{2}y+\frac{51}{4}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-13+51}{4}
Multiply -\frac{1}{2} times \frac{13}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{19}{2}
Add \frac{51}{4} to -\frac{13}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{19}{2},y=\frac{13}{2}
The system is now solved.
4x+2y=51,13x+15y=221
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&2\\13&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}51\\221\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&2\\13&15\end{matrix}\right))\left(\begin{matrix}4&2\\13&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\13&15\end{matrix}\right))\left(\begin{matrix}51\\221\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&2\\13&15\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\13&15\end{matrix}\right))\left(\begin{matrix}51\\221\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\13&15\end{matrix}\right))\left(\begin{matrix}51\\221\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{4\times 15-2\times 13}&-\frac{2}{4\times 15-2\times 13}\\-\frac{13}{4\times 15-2\times 13}&\frac{4}{4\times 15-2\times 13}\end{matrix}\right)\left(\begin{matrix}51\\221\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{34}&-\frac{1}{17}\\-\frac{13}{34}&\frac{2}{17}\end{matrix}\right)\left(\begin{matrix}51\\221\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{34}\times 51-\frac{1}{17}\times 221\\-\frac{13}{34}\times 51+\frac{2}{17}\times 221\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{19}{2}\\\frac{13}{2}\end{matrix}\right)
Do the arithmetic.
x=\frac{19}{2},y=\frac{13}{2}
Extract the matrix elements x and y.
4x+2y=51,13x+15y=221
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
13\times 4x+13\times 2y=13\times 51,4\times 13x+4\times 15y=4\times 221
To make 4x and 13x equal, multiply all terms on each side of the first equation by 13 and all terms on each side of the second by 4.
52x+26y=663,52x+60y=884
Simplify.
52x-52x+26y-60y=663-884
Subtract 52x+60y=884 from 52x+26y=663 by subtracting like terms on each side of the equal sign.
26y-60y=663-884
Add 52x to -52x. Terms 52x and -52x cancel out, leaving an equation with only one variable that can be solved.
-34y=663-884
Add 26y to -60y.
-34y=-221
Add 663 to -884.
y=\frac{13}{2}
Divide both sides by -34.
13x+15\times \frac{13}{2}=221
Substitute \frac{13}{2} for y in 13x+15y=221. Because the resulting equation contains only one variable, you can solve for x directly.
13x+\frac{195}{2}=221
Multiply 15 times \frac{13}{2}.
13x=\frac{247}{2}
Subtract \frac{195}{2} from both sides of the equation.
x=\frac{19}{2}
Divide both sides by 13.
x=\frac{19}{2},y=\frac{13}{2}
The system is now solved.