Solve for a
a=\frac{2\left(2x+1\right)}{3x+1}
x\neq -\frac{1}{3}
Solve for x
x=-\frac{2-a}{4-3a}
a\neq \frac{4}{3}
Graph
Share
Copied to clipboard
2-3ax-a=-4x
Subtract 4x from both sides. Anything subtracted from zero gives its negation.
-3ax-a=-4x-2
Subtract 2 from both sides.
\left(-3x-1\right)a=-4x-2
Combine all terms containing a.
\frac{\left(-3x-1\right)a}{-3x-1}=\frac{-4x-2}{-3x-1}
Divide both sides by -3x-1.
a=\frac{-4x-2}{-3x-1}
Dividing by -3x-1 undoes the multiplication by -3x-1.
a=\frac{2\left(2x+1\right)}{3x+1}
Divide -4x-2 by -3x-1.
4x-3ax-a=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
4x-3ax=-2+a
Add a to both sides.
\left(4-3a\right)x=-2+a
Combine all terms containing x.
\left(4-3a\right)x=a-2
The equation is in standard form.
\frac{\left(4-3a\right)x}{4-3a}=\frac{a-2}{4-3a}
Divide both sides by 4-3a.
x=\frac{a-2}{4-3a}
Dividing by 4-3a undoes the multiplication by 4-3a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}