Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x+11-2x^{2}=0
Subtract 2x^{2} from both sides.
-2x^{2}+4x+11=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\left(-2\right)\times 11}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 4 for b, and 11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-2\right)\times 11}}{2\left(-2\right)}
Square 4.
x=\frac{-4±\sqrt{16+8\times 11}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-4±\sqrt{16+88}}{2\left(-2\right)}
Multiply 8 times 11.
x=\frac{-4±\sqrt{104}}{2\left(-2\right)}
Add 16 to 88.
x=\frac{-4±2\sqrt{26}}{2\left(-2\right)}
Take the square root of 104.
x=\frac{-4±2\sqrt{26}}{-4}
Multiply 2 times -2.
x=\frac{2\sqrt{26}-4}{-4}
Now solve the equation x=\frac{-4±2\sqrt{26}}{-4} when ± is plus. Add -4 to 2\sqrt{26}.
x=-\frac{\sqrt{26}}{2}+1
Divide -4+2\sqrt{26} by -4.
x=\frac{-2\sqrt{26}-4}{-4}
Now solve the equation x=\frac{-4±2\sqrt{26}}{-4} when ± is minus. Subtract 2\sqrt{26} from -4.
x=\frac{\sqrt{26}}{2}+1
Divide -4-2\sqrt{26} by -4.
x=-\frac{\sqrt{26}}{2}+1 x=\frac{\sqrt{26}}{2}+1
The equation is now solved.
4x+11-2x^{2}=0
Subtract 2x^{2} from both sides.
4x-2x^{2}=-11
Subtract 11 from both sides. Anything subtracted from zero gives its negation.
-2x^{2}+4x=-11
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+4x}{-2}=-\frac{11}{-2}
Divide both sides by -2.
x^{2}+\frac{4}{-2}x=-\frac{11}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-2x=-\frac{11}{-2}
Divide 4 by -2.
x^{2}-2x=\frac{11}{2}
Divide -11 by -2.
x^{2}-2x+1=\frac{11}{2}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{13}{2}
Add \frac{11}{2} to 1.
\left(x-1\right)^{2}=\frac{13}{2}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{13}{2}}
Take the square root of both sides of the equation.
x-1=\frac{\sqrt{26}}{2} x-1=-\frac{\sqrt{26}}{2}
Simplify.
x=\frac{\sqrt{26}}{2}+1 x=-\frac{\sqrt{26}}{2}+1
Add 1 to both sides of the equation.