Solve for x
x<\frac{7}{10}
Graph
Share
Copied to clipboard
4x+\frac{2}{5}-6x>-1
Subtract 6x from both sides.
-2x+\frac{2}{5}>-1
Combine 4x and -6x to get -2x.
-2x>-1-\frac{2}{5}
Subtract \frac{2}{5} from both sides.
-2x>-\frac{5}{5}-\frac{2}{5}
Convert -1 to fraction -\frac{5}{5}.
-2x>\frac{-5-2}{5}
Since -\frac{5}{5} and \frac{2}{5} have the same denominator, subtract them by subtracting their numerators.
-2x>-\frac{7}{5}
Subtract 2 from -5 to get -7.
x<\frac{-\frac{7}{5}}{-2}
Divide both sides by -2. Since -2 is negative, the inequality direction is changed.
x<\frac{-7}{5\left(-2\right)}
Express \frac{-\frac{7}{5}}{-2} as a single fraction.
x<\frac{-7}{-10}
Multiply 5 and -2 to get -10.
x<\frac{7}{10}
Fraction \frac{-7}{-10} can be simplified to \frac{7}{10} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}