Solve for x
x<\frac{11}{24}
Graph
Share
Copied to clipboard
4x+\frac{1}{3}<\frac{1}{6}+\frac{12}{6}
Convert 2 to fraction \frac{12}{6}.
4x+\frac{1}{3}<\frac{1+12}{6}
Since \frac{1}{6} and \frac{12}{6} have the same denominator, add them by adding their numerators.
4x+\frac{1}{3}<\frac{13}{6}
Add 1 and 12 to get 13.
4x<\frac{13}{6}-\frac{1}{3}
Subtract \frac{1}{3} from both sides.
4x<\frac{13}{6}-\frac{2}{6}
Least common multiple of 6 and 3 is 6. Convert \frac{13}{6} and \frac{1}{3} to fractions with denominator 6.
4x<\frac{13-2}{6}
Since \frac{13}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
4x<\frac{11}{6}
Subtract 2 from 13 to get 11.
x<\frac{\frac{11}{6}}{4}
Divide both sides by 4. Since 4 is positive, the inequality direction remains the same.
x<\frac{11}{6\times 4}
Express \frac{\frac{11}{6}}{4} as a single fraction.
x<\frac{11}{24}
Multiply 6 and 4 to get 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}