Solve for w
w=-7
w=0
Share
Copied to clipboard
w\left(4w+28\right)=0
Factor out w.
w=0 w=-7
To find equation solutions, solve w=0 and 4w+28=0.
4w^{2}+28w=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
w=\frac{-28±\sqrt{28^{2}}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 28 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-28±28}{2\times 4}
Take the square root of 28^{2}.
w=\frac{-28±28}{8}
Multiply 2 times 4.
w=\frac{0}{8}
Now solve the equation w=\frac{-28±28}{8} when ± is plus. Add -28 to 28.
w=0
Divide 0 by 8.
w=-\frac{56}{8}
Now solve the equation w=\frac{-28±28}{8} when ± is minus. Subtract 28 from -28.
w=-7
Divide -56 by 8.
w=0 w=-7
The equation is now solved.
4w^{2}+28w=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4w^{2}+28w}{4}=\frac{0}{4}
Divide both sides by 4.
w^{2}+\frac{28}{4}w=\frac{0}{4}
Dividing by 4 undoes the multiplication by 4.
w^{2}+7w=\frac{0}{4}
Divide 28 by 4.
w^{2}+7w=0
Divide 0 by 4.
w^{2}+7w+\left(\frac{7}{2}\right)^{2}=\left(\frac{7}{2}\right)^{2}
Divide 7, the coefficient of the x term, by 2 to get \frac{7}{2}. Then add the square of \frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
w^{2}+7w+\frac{49}{4}=\frac{49}{4}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
\left(w+\frac{7}{2}\right)^{2}=\frac{49}{4}
Factor w^{2}+7w+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w+\frac{7}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Take the square root of both sides of the equation.
w+\frac{7}{2}=\frac{7}{2} w+\frac{7}{2}=-\frac{7}{2}
Simplify.
w=0 w=-7
Subtract \frac{7}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}