Skip to main content
Solve for v_1
Tick mark Image

Similar Problems from Web Search

Share

3.2v_{1}^{2}=2.354
Combine 4v_{1}^{2} and -0.8v_{1}^{2} to get 3.2v_{1}^{2}.
v_{1}^{2}=\frac{2.354}{3.2}
Divide both sides by 3.2.
v_{1}^{2}=\frac{2354}{3200}
Expand \frac{2.354}{3.2} by multiplying both numerator and the denominator by 1000.
v_{1}^{2}=\frac{1177}{1600}
Reduce the fraction \frac{2354}{3200} to lowest terms by extracting and canceling out 2.
v_{1}=\frac{\sqrt{1177}}{40} v_{1}=-\frac{\sqrt{1177}}{40}
Take the square root of both sides of the equation.
3.2v_{1}^{2}=2.354
Combine 4v_{1}^{2} and -0.8v_{1}^{2} to get 3.2v_{1}^{2}.
3.2v_{1}^{2}-2.354=0
Subtract 2.354 from both sides.
v_{1}=\frac{0±\sqrt{0^{2}-4\times 3.2\left(-2.354\right)}}{2\times 3.2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3.2 for a, 0 for b, and -2.354 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v_{1}=\frac{0±\sqrt{-4\times 3.2\left(-2.354\right)}}{2\times 3.2}
Square 0.
v_{1}=\frac{0±\sqrt{-12.8\left(-2.354\right)}}{2\times 3.2}
Multiply -4 times 3.2.
v_{1}=\frac{0±\sqrt{30.1312}}{2\times 3.2}
Multiply -12.8 times -2.354 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
v_{1}=\frac{0±\frac{4\sqrt{1177}}{25}}{2\times 3.2}
Take the square root of 30.1312.
v_{1}=\frac{0±\frac{4\sqrt{1177}}{25}}{6.4}
Multiply 2 times 3.2.
v_{1}=\frac{\sqrt{1177}}{40}
Now solve the equation v_{1}=\frac{0±\frac{4\sqrt{1177}}{25}}{6.4} when ± is plus.
v_{1}=-\frac{\sqrt{1177}}{40}
Now solve the equation v_{1}=\frac{0±\frac{4\sqrt{1177}}{25}}{6.4} when ± is minus.
v_{1}=\frac{\sqrt{1177}}{40} v_{1}=-\frac{\sqrt{1177}}{40}
The equation is now solved.