Factor
2\left(v-1\right)\left(2v-5\right)v^{3}
Evaluate
2\left(v-1\right)\left(2v-5\right)v^{3}
Share
Copied to clipboard
2\left(2v^{5}-7v^{4}+5v^{3}\right)
Factor out 2.
v^{3}\left(2v^{2}-7v+5\right)
Consider 2v^{5}-7v^{4}+5v^{3}. Factor out v^{3}.
a+b=-7 ab=2\times 5=10
Consider 2v^{2}-7v+5. Factor the expression by grouping. First, the expression needs to be rewritten as 2v^{2}+av+bv+5. To find a and b, set up a system to be solved.
-1,-10 -2,-5
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 10.
-1-10=-11 -2-5=-7
Calculate the sum for each pair.
a=-5 b=-2
The solution is the pair that gives sum -7.
\left(2v^{2}-5v\right)+\left(-2v+5\right)
Rewrite 2v^{2}-7v+5 as \left(2v^{2}-5v\right)+\left(-2v+5\right).
v\left(2v-5\right)-\left(2v-5\right)
Factor out v in the first and -1 in the second group.
\left(2v-5\right)\left(v-1\right)
Factor out common term 2v-5 by using distributive property.
2v^{3}\left(2v-5\right)\left(v-1\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}