Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4\left(u^{2}+2u\right)
Factor out 4.
u\left(u+2\right)
Consider u^{2}+2u. Factor out u.
4u\left(u+2\right)
Rewrite the complete factored expression.
4u^{2}+8u=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
u=\frac{-8±\sqrt{8^{2}}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
u=\frac{-8±8}{2\times 4}
Take the square root of 8^{2}.
u=\frac{-8±8}{8}
Multiply 2 times 4.
u=\frac{0}{8}
Now solve the equation u=\frac{-8±8}{8} when ± is plus. Add -8 to 8.
u=0
Divide 0 by 8.
u=-\frac{16}{8}
Now solve the equation u=\frac{-8±8}{8} when ± is minus. Subtract 8 from -8.
u=-2
Divide -16 by 8.
4u^{2}+8u=4u\left(u-\left(-2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -2 for x_{2}.
4u^{2}+8u=4u\left(u+2\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.