Solve for d
d=-4u-4v-2w-9
Solve for u
u=-\frac{d}{4}-\frac{w}{2}-v-\frac{9}{4}
Share
Copied to clipboard
4v+2w+d+9=-4u
Subtract 4u from both sides. Anything subtracted from zero gives its negation.
2w+d+9=-4u-4v
Subtract 4v from both sides.
d+9=-4u-4v-2w
Subtract 2w from both sides.
d=-4u-4v-2w-9
Subtract 9 from both sides.
4u+2w+d+9=-4v
Subtract 4v from both sides. Anything subtracted from zero gives its negation.
4u+d+9=-4v-2w
Subtract 2w from both sides.
4u+9=-4v-2w-d
Subtract d from both sides.
4u=-4v-2w-d-9
Subtract 9 from both sides.
\frac{4u}{4}=\frac{-4v-2w-d-9}{4}
Divide both sides by 4.
u=\frac{-4v-2w-d-9}{4}
Dividing by 4 undoes the multiplication by 4.
u=-\frac{d}{4}-\frac{w}{2}-v-\frac{9}{4}
Divide -4v-2w-d-9 by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}