Solve for t
t=9
Share
Copied to clipboard
4t^{2}-20t-2t\left(3t+2\right)+108=3t\left(2t-5\right)-t\left(8t-3\right)
Use the distributive property to multiply 4t by t-5.
4t^{2}-20t-2t\left(3t+2\right)+108=6t^{2}-15t-t\left(8t-3\right)
Use the distributive property to multiply 3t by 2t-5.
4t^{2}-20t-2t\left(3t+2\right)+108=6t^{2}-15t-\left(8t^{2}-3t\right)
Use the distributive property to multiply t by 8t-3.
4t^{2}-20t-2t\left(3t+2\right)+108=6t^{2}-15t-8t^{2}-\left(-3t\right)
To find the opposite of 8t^{2}-3t, find the opposite of each term.
4t^{2}-20t-2t\left(3t+2\right)+108=6t^{2}-15t-8t^{2}+3t
The opposite of -3t is 3t.
4t^{2}-20t-2t\left(3t+2\right)+108=-2t^{2}-15t+3t
Combine 6t^{2} and -8t^{2} to get -2t^{2}.
4t^{2}-20t-2t\left(3t+2\right)+108=-2t^{2}-12t
Combine -15t and 3t to get -12t.
4t^{2}-20t-2t\left(3t+2\right)+108+2t^{2}=-12t
Add 2t^{2} to both sides.
4t^{2}-20t-2t\left(3t+2\right)+108+2t^{2}+12t=0
Add 12t to both sides.
4t^{2}-20t-2t\left(3t+2\right)+2t^{2}+12t=-108
Subtract 108 from both sides. Anything subtracted from zero gives its negation.
4t^{2}-20t-6t^{2}-4t+2t^{2}+12t=-108
Use the distributive property to multiply -2t by 3t+2.
-2t^{2}-20t-4t+2t^{2}+12t=-108
Combine 4t^{2} and -6t^{2} to get -2t^{2}.
-2t^{2}-24t+2t^{2}+12t=-108
Combine -20t and -4t to get -24t.
-24t+12t=-108
Combine -2t^{2} and 2t^{2} to get 0.
-12t=-108
Combine -24t and 12t to get -12t.
t=\frac{-108}{-12}
Divide both sides by -12.
t=9
Divide -108 by -12 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}