Solve for t
t=8
t = \frac{40}{11} = 3\frac{7}{11} \approx 3.636363636
Share
Copied to clipboard
4t^{2}-\frac{128}{5}t+64-\frac{9}{5}t^{2}=0
Subtract \frac{9}{5}t^{2} from both sides.
\frac{11}{5}t^{2}-\frac{128}{5}t+64=0
Combine 4t^{2} and -\frac{9}{5}t^{2} to get \frac{11}{5}t^{2}.
t=\frac{-\left(-\frac{128}{5}\right)±\sqrt{\left(-\frac{128}{5}\right)^{2}-4\times \frac{11}{5}\times 64}}{2\times \frac{11}{5}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{11}{5} for a, -\frac{128}{5} for b, and 64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-\frac{128}{5}\right)±\sqrt{\frac{16384}{25}-4\times \frac{11}{5}\times 64}}{2\times \frac{11}{5}}
Square -\frac{128}{5} by squaring both the numerator and the denominator of the fraction.
t=\frac{-\left(-\frac{128}{5}\right)±\sqrt{\frac{16384}{25}-\frac{44}{5}\times 64}}{2\times \frac{11}{5}}
Multiply -4 times \frac{11}{5}.
t=\frac{-\left(-\frac{128}{5}\right)±\sqrt{\frac{16384}{25}-\frac{2816}{5}}}{2\times \frac{11}{5}}
Multiply -\frac{44}{5} times 64.
t=\frac{-\left(-\frac{128}{5}\right)±\sqrt{\frac{2304}{25}}}{2\times \frac{11}{5}}
Add \frac{16384}{25} to -\frac{2816}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
t=\frac{-\left(-\frac{128}{5}\right)±\frac{48}{5}}{2\times \frac{11}{5}}
Take the square root of \frac{2304}{25}.
t=\frac{\frac{128}{5}±\frac{48}{5}}{2\times \frac{11}{5}}
The opposite of -\frac{128}{5} is \frac{128}{5}.
t=\frac{\frac{128}{5}±\frac{48}{5}}{\frac{22}{5}}
Multiply 2 times \frac{11}{5}.
t=\frac{\frac{176}{5}}{\frac{22}{5}}
Now solve the equation t=\frac{\frac{128}{5}±\frac{48}{5}}{\frac{22}{5}} when ± is plus. Add \frac{128}{5} to \frac{48}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
t=8
Divide \frac{176}{5} by \frac{22}{5} by multiplying \frac{176}{5} by the reciprocal of \frac{22}{5}.
t=\frac{16}{\frac{22}{5}}
Now solve the equation t=\frac{\frac{128}{5}±\frac{48}{5}}{\frac{22}{5}} when ± is minus. Subtract \frac{48}{5} from \frac{128}{5} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
t=\frac{40}{11}
Divide 16 by \frac{22}{5} by multiplying 16 by the reciprocal of \frac{22}{5}.
t=8 t=\frac{40}{11}
The equation is now solved.
4t^{2}-\frac{128}{5}t+64-\frac{9}{5}t^{2}=0
Subtract \frac{9}{5}t^{2} from both sides.
\frac{11}{5}t^{2}-\frac{128}{5}t+64=0
Combine 4t^{2} and -\frac{9}{5}t^{2} to get \frac{11}{5}t^{2}.
\frac{11}{5}t^{2}-\frac{128}{5}t=-64
Subtract 64 from both sides. Anything subtracted from zero gives its negation.
\frac{\frac{11}{5}t^{2}-\frac{128}{5}t}{\frac{11}{5}}=-\frac{64}{\frac{11}{5}}
Divide both sides of the equation by \frac{11}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\left(-\frac{\frac{128}{5}}{\frac{11}{5}}\right)t=-\frac{64}{\frac{11}{5}}
Dividing by \frac{11}{5} undoes the multiplication by \frac{11}{5}.
t^{2}-\frac{128}{11}t=-\frac{64}{\frac{11}{5}}
Divide -\frac{128}{5} by \frac{11}{5} by multiplying -\frac{128}{5} by the reciprocal of \frac{11}{5}.
t^{2}-\frac{128}{11}t=-\frac{320}{11}
Divide -64 by \frac{11}{5} by multiplying -64 by the reciprocal of \frac{11}{5}.
t^{2}-\frac{128}{11}t+\left(-\frac{64}{11}\right)^{2}=-\frac{320}{11}+\left(-\frac{64}{11}\right)^{2}
Divide -\frac{128}{11}, the coefficient of the x term, by 2 to get -\frac{64}{11}. Then add the square of -\frac{64}{11} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{128}{11}t+\frac{4096}{121}=-\frac{320}{11}+\frac{4096}{121}
Square -\frac{64}{11} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{128}{11}t+\frac{4096}{121}=\frac{576}{121}
Add -\frac{320}{11} to \frac{4096}{121} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{64}{11}\right)^{2}=\frac{576}{121}
Factor t^{2}-\frac{128}{11}t+\frac{4096}{121}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{64}{11}\right)^{2}}=\sqrt{\frac{576}{121}}
Take the square root of both sides of the equation.
t-\frac{64}{11}=\frac{24}{11} t-\frac{64}{11}=-\frac{24}{11}
Simplify.
t=8 t=\frac{40}{11}
Add \frac{64}{11} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}