Solve for s
s = -\frac{755}{18} = -41\frac{17}{18} \approx -41.944444444
Share
Copied to clipboard
4s-\left(22s-13\right)=768
Combine s and 21s to get 22s.
4s-22s-\left(-13\right)=768
To find the opposite of 22s-13, find the opposite of each term.
4s-22s+13=768
The opposite of -13 is 13.
-18s+13=768
Combine 4s and -22s to get -18s.
-18s=768-13
Subtract 13 from both sides.
-18s=755
Subtract 13 from 768 to get 755.
s=\frac{755}{-18}
Divide both sides by -18.
s=-\frac{755}{18}
Fraction \frac{755}{-18} can be rewritten as -\frac{755}{18} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}