Solve for t
t=-\frac{100us^{2}}{3}+4
Solve for s (complex solution)
\left\{\begin{matrix}s=-\frac{iu^{-\frac{1}{2}}\sqrt{3\left(t-4\right)}}{10}\text{; }s=\frac{iu^{-\frac{1}{2}}\sqrt{3\left(t-4\right)}}{10}\text{, }&u\neq 0\\s\in \mathrm{C}\text{, }&t=4\text{ and }u=0\end{matrix}\right.
Solve for s
\left\{\begin{matrix}s=\frac{\sqrt{-\frac{3\left(t-4\right)}{u}}}{10}\text{; }s=-\frac{\sqrt{-\frac{3\left(t-4\right)}{u}}}{10}\text{, }&\left(u>0\text{ and }t\leq 4\right)\text{ or }\left(t\geq 4\text{ and }u<0\right)\\s\in \mathrm{R}\text{, }&t=4\text{ and }u=0\end{matrix}\right.
Share
Copied to clipboard
20s^{2}\left(-5\right)u=3t-4\times 3
Multiply both sides of the equation by 5.
-100s^{2}u=3t-4\times 3
Multiply 20 and -5 to get -100.
-100s^{2}u=3t-12
Multiply 4 and 3 to get 12.
3t-12=-100s^{2}u
Swap sides so that all variable terms are on the left hand side.
3t=-100s^{2}u+12
Add 12 to both sides.
3t=12-100us^{2}
The equation is in standard form.
\frac{3t}{3}=\frac{12-100us^{2}}{3}
Divide both sides by 3.
t=\frac{12-100us^{2}}{3}
Dividing by 3 undoes the multiplication by 3.
t=-\frac{100us^{2}}{3}+4
Divide -100s^{2}u+12 by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}