Solve for s
s=-16
s = \frac{16}{9} = 1\frac{7}{9} \approx 1.777777778
Share
Copied to clipboard
4s^{2}=\left(\frac{32-8s}{5}\right)^{2}
Subtract 3 from 35 to get 32.
4s^{2}=\frac{\left(32-8s\right)^{2}}{5^{2}}
To raise \frac{32-8s}{5} to a power, raise both numerator and denominator to the power and then divide.
4s^{2}=\frac{1024-512s+64s^{2}}{5^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(32-8s\right)^{2}.
4s^{2}=\frac{1024-512s+64s^{2}}{25}
Calculate 5 to the power of 2 and get 25.
4s^{2}=\frac{1024}{25}-\frac{512}{25}s+\frac{64}{25}s^{2}
Divide each term of 1024-512s+64s^{2} by 25 to get \frac{1024}{25}-\frac{512}{25}s+\frac{64}{25}s^{2}.
4s^{2}-\frac{1024}{25}=-\frac{512}{25}s+\frac{64}{25}s^{2}
Subtract \frac{1024}{25} from both sides.
4s^{2}-\frac{1024}{25}+\frac{512}{25}s=\frac{64}{25}s^{2}
Add \frac{512}{25}s to both sides.
4s^{2}-\frac{1024}{25}+\frac{512}{25}s-\frac{64}{25}s^{2}=0
Subtract \frac{64}{25}s^{2} from both sides.
\frac{36}{25}s^{2}-\frac{1024}{25}+\frac{512}{25}s=0
Combine 4s^{2} and -\frac{64}{25}s^{2} to get \frac{36}{25}s^{2}.
\frac{36}{25}s^{2}+\frac{512}{25}s-\frac{1024}{25}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
s=\frac{-\frac{512}{25}±\sqrt{\left(\frac{512}{25}\right)^{2}-4\times \frac{36}{25}\left(-\frac{1024}{25}\right)}}{2\times \frac{36}{25}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{36}{25} for a, \frac{512}{25} for b, and -\frac{1024}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{-\frac{512}{25}±\sqrt{\frac{262144}{625}-4\times \frac{36}{25}\left(-\frac{1024}{25}\right)}}{2\times \frac{36}{25}}
Square \frac{512}{25} by squaring both the numerator and the denominator of the fraction.
s=\frac{-\frac{512}{25}±\sqrt{\frac{262144}{625}-\frac{144}{25}\left(-\frac{1024}{25}\right)}}{2\times \frac{36}{25}}
Multiply -4 times \frac{36}{25}.
s=\frac{-\frac{512}{25}±\sqrt{\frac{262144+147456}{625}}}{2\times \frac{36}{25}}
Multiply -\frac{144}{25} times -\frac{1024}{25} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
s=\frac{-\frac{512}{25}±\sqrt{\frac{16384}{25}}}{2\times \frac{36}{25}}
Add \frac{262144}{625} to \frac{147456}{625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
s=\frac{-\frac{512}{25}±\frac{128}{5}}{2\times \frac{36}{25}}
Take the square root of \frac{16384}{25}.
s=\frac{-\frac{512}{25}±\frac{128}{5}}{\frac{72}{25}}
Multiply 2 times \frac{36}{25}.
s=\frac{\frac{128}{25}}{\frac{72}{25}}
Now solve the equation s=\frac{-\frac{512}{25}±\frac{128}{5}}{\frac{72}{25}} when ± is plus. Add -\frac{512}{25} to \frac{128}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
s=\frac{16}{9}
Divide \frac{128}{25} by \frac{72}{25} by multiplying \frac{128}{25} by the reciprocal of \frac{72}{25}.
s=-\frac{\frac{1152}{25}}{\frac{72}{25}}
Now solve the equation s=\frac{-\frac{512}{25}±\frac{128}{5}}{\frac{72}{25}} when ± is minus. Subtract \frac{128}{5} from -\frac{512}{25} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
s=-16
Divide -\frac{1152}{25} by \frac{72}{25} by multiplying -\frac{1152}{25} by the reciprocal of \frac{72}{25}.
s=\frac{16}{9} s=-16
The equation is now solved.
4s^{2}=\left(\frac{32-8s}{5}\right)^{2}
Subtract 3 from 35 to get 32.
4s^{2}=\frac{\left(32-8s\right)^{2}}{5^{2}}
To raise \frac{32-8s}{5} to a power, raise both numerator and denominator to the power and then divide.
4s^{2}=\frac{1024-512s+64s^{2}}{5^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(32-8s\right)^{2}.
4s^{2}=\frac{1024-512s+64s^{2}}{25}
Calculate 5 to the power of 2 and get 25.
4s^{2}=\frac{1024}{25}-\frac{512}{25}s+\frac{64}{25}s^{2}
Divide each term of 1024-512s+64s^{2} by 25 to get \frac{1024}{25}-\frac{512}{25}s+\frac{64}{25}s^{2}.
4s^{2}+\frac{512}{25}s=\frac{1024}{25}+\frac{64}{25}s^{2}
Add \frac{512}{25}s to both sides.
4s^{2}+\frac{512}{25}s-\frac{64}{25}s^{2}=\frac{1024}{25}
Subtract \frac{64}{25}s^{2} from both sides.
\frac{36}{25}s^{2}+\frac{512}{25}s=\frac{1024}{25}
Combine 4s^{2} and -\frac{64}{25}s^{2} to get \frac{36}{25}s^{2}.
\frac{\frac{36}{25}s^{2}+\frac{512}{25}s}{\frac{36}{25}}=\frac{\frac{1024}{25}}{\frac{36}{25}}
Divide both sides of the equation by \frac{36}{25}, which is the same as multiplying both sides by the reciprocal of the fraction.
s^{2}+\frac{\frac{512}{25}}{\frac{36}{25}}s=\frac{\frac{1024}{25}}{\frac{36}{25}}
Dividing by \frac{36}{25} undoes the multiplication by \frac{36}{25}.
s^{2}+\frac{128}{9}s=\frac{\frac{1024}{25}}{\frac{36}{25}}
Divide \frac{512}{25} by \frac{36}{25} by multiplying \frac{512}{25} by the reciprocal of \frac{36}{25}.
s^{2}+\frac{128}{9}s=\frac{256}{9}
Divide \frac{1024}{25} by \frac{36}{25} by multiplying \frac{1024}{25} by the reciprocal of \frac{36}{25}.
s^{2}+\frac{128}{9}s+\left(\frac{64}{9}\right)^{2}=\frac{256}{9}+\left(\frac{64}{9}\right)^{2}
Divide \frac{128}{9}, the coefficient of the x term, by 2 to get \frac{64}{9}. Then add the square of \frac{64}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
s^{2}+\frac{128}{9}s+\frac{4096}{81}=\frac{256}{9}+\frac{4096}{81}
Square \frac{64}{9} by squaring both the numerator and the denominator of the fraction.
s^{2}+\frac{128}{9}s+\frac{4096}{81}=\frac{6400}{81}
Add \frac{256}{9} to \frac{4096}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(s+\frac{64}{9}\right)^{2}=\frac{6400}{81}
Factor s^{2}+\frac{128}{9}s+\frac{4096}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(s+\frac{64}{9}\right)^{2}}=\sqrt{\frac{6400}{81}}
Take the square root of both sides of the equation.
s+\frac{64}{9}=\frac{80}{9} s+\frac{64}{9}=-\frac{80}{9}
Simplify.
s=\frac{16}{9} s=-16
Subtract \frac{64}{9} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}