Solve for s
s=\frac{\sqrt{215}i}{40}-\frac{1}{8}\approx -0.125+0.366571957i
s=-\frac{\sqrt{215}i}{40}-\frac{1}{8}\approx -0.125-0.366571957i
Share
Copied to clipboard
20s^{2}=3\left(s-1\right)-4\times 2s
Multiply both sides of the equation by 5.
20s^{2}=3s-3-4\times 2s
Use the distributive property to multiply 3 by s-1.
20s^{2}=3s-3-8s
Multiply 4 and 2 to get 8.
20s^{2}=-5s-3
Combine 3s and -8s to get -5s.
20s^{2}+5s=-3
Add 5s to both sides.
20s^{2}+5s+3=0
Add 3 to both sides.
s=\frac{-5±\sqrt{5^{2}-4\times 20\times 3}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, 5 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{-5±\sqrt{25-4\times 20\times 3}}{2\times 20}
Square 5.
s=\frac{-5±\sqrt{25-80\times 3}}{2\times 20}
Multiply -4 times 20.
s=\frac{-5±\sqrt{25-240}}{2\times 20}
Multiply -80 times 3.
s=\frac{-5±\sqrt{-215}}{2\times 20}
Add 25 to -240.
s=\frac{-5±\sqrt{215}i}{2\times 20}
Take the square root of -215.
s=\frac{-5±\sqrt{215}i}{40}
Multiply 2 times 20.
s=\frac{-5+\sqrt{215}i}{40}
Now solve the equation s=\frac{-5±\sqrt{215}i}{40} when ± is plus. Add -5 to i\sqrt{215}.
s=\frac{\sqrt{215}i}{40}-\frac{1}{8}
Divide -5+i\sqrt{215} by 40.
s=\frac{-\sqrt{215}i-5}{40}
Now solve the equation s=\frac{-5±\sqrt{215}i}{40} when ± is minus. Subtract i\sqrt{215} from -5.
s=-\frac{\sqrt{215}i}{40}-\frac{1}{8}
Divide -5-i\sqrt{215} by 40.
s=\frac{\sqrt{215}i}{40}-\frac{1}{8} s=-\frac{\sqrt{215}i}{40}-\frac{1}{8}
The equation is now solved.
20s^{2}=3\left(s-1\right)-4\times 2s
Multiply both sides of the equation by 5.
20s^{2}=3s-3-4\times 2s
Use the distributive property to multiply 3 by s-1.
20s^{2}=3s-3-8s
Multiply 4 and 2 to get 8.
20s^{2}=-5s-3
Combine 3s and -8s to get -5s.
20s^{2}+5s=-3
Add 5s to both sides.
\frac{20s^{2}+5s}{20}=-\frac{3}{20}
Divide both sides by 20.
s^{2}+\frac{5}{20}s=-\frac{3}{20}
Dividing by 20 undoes the multiplication by 20.
s^{2}+\frac{1}{4}s=-\frac{3}{20}
Reduce the fraction \frac{5}{20} to lowest terms by extracting and canceling out 5.
s^{2}+\frac{1}{4}s+\left(\frac{1}{8}\right)^{2}=-\frac{3}{20}+\left(\frac{1}{8}\right)^{2}
Divide \frac{1}{4}, the coefficient of the x term, by 2 to get \frac{1}{8}. Then add the square of \frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
s^{2}+\frac{1}{4}s+\frac{1}{64}=-\frac{3}{20}+\frac{1}{64}
Square \frac{1}{8} by squaring both the numerator and the denominator of the fraction.
s^{2}+\frac{1}{4}s+\frac{1}{64}=-\frac{43}{320}
Add -\frac{3}{20} to \frac{1}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(s+\frac{1}{8}\right)^{2}=-\frac{43}{320}
Factor s^{2}+\frac{1}{4}s+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(s+\frac{1}{8}\right)^{2}}=\sqrt{-\frac{43}{320}}
Take the square root of both sides of the equation.
s+\frac{1}{8}=\frac{\sqrt{215}i}{40} s+\frac{1}{8}=-\frac{\sqrt{215}i}{40}
Simplify.
s=\frac{\sqrt{215}i}{40}-\frac{1}{8} s=-\frac{\sqrt{215}i}{40}-\frac{1}{8}
Subtract \frac{1}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}