Solve for r
r=\frac{\sqrt{185}-11}{8}\approx 0.325183814
r=\frac{-\sqrt{185}-11}{8}\approx -3.075183814
Share
Copied to clipboard
4r^{2}+11r=4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4r^{2}+11r-4=4-4
Subtract 4 from both sides of the equation.
4r^{2}+11r-4=0
Subtracting 4 from itself leaves 0.
r=\frac{-11±\sqrt{11^{2}-4\times 4\left(-4\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 11 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-11±\sqrt{121-4\times 4\left(-4\right)}}{2\times 4}
Square 11.
r=\frac{-11±\sqrt{121-16\left(-4\right)}}{2\times 4}
Multiply -4 times 4.
r=\frac{-11±\sqrt{121+64}}{2\times 4}
Multiply -16 times -4.
r=\frac{-11±\sqrt{185}}{2\times 4}
Add 121 to 64.
r=\frac{-11±\sqrt{185}}{8}
Multiply 2 times 4.
r=\frac{\sqrt{185}-11}{8}
Now solve the equation r=\frac{-11±\sqrt{185}}{8} when ± is plus. Add -11 to \sqrt{185}.
r=\frac{-\sqrt{185}-11}{8}
Now solve the equation r=\frac{-11±\sqrt{185}}{8} when ± is minus. Subtract \sqrt{185} from -11.
r=\frac{\sqrt{185}-11}{8} r=\frac{-\sqrt{185}-11}{8}
The equation is now solved.
4r^{2}+11r=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4r^{2}+11r}{4}=\frac{4}{4}
Divide both sides by 4.
r^{2}+\frac{11}{4}r=\frac{4}{4}
Dividing by 4 undoes the multiplication by 4.
r^{2}+\frac{11}{4}r=1
Divide 4 by 4.
r^{2}+\frac{11}{4}r+\left(\frac{11}{8}\right)^{2}=1+\left(\frac{11}{8}\right)^{2}
Divide \frac{11}{4}, the coefficient of the x term, by 2 to get \frac{11}{8}. Then add the square of \frac{11}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}+\frac{11}{4}r+\frac{121}{64}=1+\frac{121}{64}
Square \frac{11}{8} by squaring both the numerator and the denominator of the fraction.
r^{2}+\frac{11}{4}r+\frac{121}{64}=\frac{185}{64}
Add 1 to \frac{121}{64}.
\left(r+\frac{11}{8}\right)^{2}=\frac{185}{64}
Factor r^{2}+\frac{11}{4}r+\frac{121}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r+\frac{11}{8}\right)^{2}}=\sqrt{\frac{185}{64}}
Take the square root of both sides of the equation.
r+\frac{11}{8}=\frac{\sqrt{185}}{8} r+\frac{11}{8}=-\frac{\sqrt{185}}{8}
Simplify.
r=\frac{\sqrt{185}-11}{8} r=\frac{-\sqrt{185}-11}{8}
Subtract \frac{11}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}