Factor
4q\left(q-10\right)\left(q+5\right)
Evaluate
4q\left(q-10\right)\left(q+5\right)
Share
Copied to clipboard
4\left(q^{3}-5q^{2}-50q\right)
Factor out 4.
q\left(q^{2}-5q-50\right)
Consider q^{3}-5q^{2}-50q. Factor out q.
a+b=-5 ab=1\left(-50\right)=-50
Consider q^{2}-5q-50. Factor the expression by grouping. First, the expression needs to be rewritten as q^{2}+aq+bq-50. To find a and b, set up a system to be solved.
1,-50 2,-25 5,-10
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -50.
1-50=-49 2-25=-23 5-10=-5
Calculate the sum for each pair.
a=-10 b=5
The solution is the pair that gives sum -5.
\left(q^{2}-10q\right)+\left(5q-50\right)
Rewrite q^{2}-5q-50 as \left(q^{2}-10q\right)+\left(5q-50\right).
q\left(q-10\right)+5\left(q-10\right)
Factor out q in the first and 5 in the second group.
\left(q-10\right)\left(q+5\right)
Factor out common term q-10 by using distributive property.
4q\left(q-10\right)\left(q+5\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}