Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\left(2q^{2}-17q+35\right)
Factor out 2.
a+b=-17 ab=2\times 35=70
Consider 2q^{2}-17q+35. Factor the expression by grouping. First, the expression needs to be rewritten as 2q^{2}+aq+bq+35. To find a and b, set up a system to be solved.
-1,-70 -2,-35 -5,-14 -7,-10
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 70.
-1-70=-71 -2-35=-37 -5-14=-19 -7-10=-17
Calculate the sum for each pair.
a=-10 b=-7
The solution is the pair that gives sum -17.
\left(2q^{2}-10q\right)+\left(-7q+35\right)
Rewrite 2q^{2}-17q+35 as \left(2q^{2}-10q\right)+\left(-7q+35\right).
2q\left(q-5\right)-7\left(q-5\right)
Factor out 2q in the first and -7 in the second group.
\left(q-5\right)\left(2q-7\right)
Factor out common term q-5 by using distributive property.
2\left(q-5\right)\left(2q-7\right)
Rewrite the complete factored expression.
4q^{2}-34q+70=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
q=\frac{-\left(-34\right)±\sqrt{\left(-34\right)^{2}-4\times 4\times 70}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
q=\frac{-\left(-34\right)±\sqrt{1156-4\times 4\times 70}}{2\times 4}
Square -34.
q=\frac{-\left(-34\right)±\sqrt{1156-16\times 70}}{2\times 4}
Multiply -4 times 4.
q=\frac{-\left(-34\right)±\sqrt{1156-1120}}{2\times 4}
Multiply -16 times 70.
q=\frac{-\left(-34\right)±\sqrt{36}}{2\times 4}
Add 1156 to -1120.
q=\frac{-\left(-34\right)±6}{2\times 4}
Take the square root of 36.
q=\frac{34±6}{2\times 4}
The opposite of -34 is 34.
q=\frac{34±6}{8}
Multiply 2 times 4.
q=\frac{40}{8}
Now solve the equation q=\frac{34±6}{8} when ± is plus. Add 34 to 6.
q=5
Divide 40 by 8.
q=\frac{28}{8}
Now solve the equation q=\frac{34±6}{8} when ± is minus. Subtract 6 from 34.
q=\frac{7}{2}
Reduce the fraction \frac{28}{8} to lowest terms by extracting and canceling out 4.
4q^{2}-34q+70=4\left(q-5\right)\left(q-\frac{7}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 5 for x_{1} and \frac{7}{2} for x_{2}.
4q^{2}-34q+70=4\left(q-5\right)\times \frac{2q-7}{2}
Subtract \frac{7}{2} from q by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
4q^{2}-34q+70=2\left(q-5\right)\left(2q-7\right)
Cancel out 2, the greatest common factor in 4 and 2.
x ^ 2 -\frac{17}{2}x +\frac{35}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 4
r + s = \frac{17}{2} rs = \frac{35}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{17}{4} - u s = \frac{17}{4} + u
Two numbers r and s sum up to \frac{17}{2} exactly when the average of the two numbers is \frac{1}{2}*\frac{17}{2} = \frac{17}{4}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{17}{4} - u) (\frac{17}{4} + u) = \frac{35}{2}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{35}{2}
\frac{289}{16} - u^2 = \frac{35}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{35}{2}-\frac{289}{16} = -\frac{9}{16}
Simplify the expression by subtracting \frac{289}{16} on both sides
u^2 = \frac{9}{16} u = \pm\sqrt{\frac{9}{16}} = \pm \frac{3}{4}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{17}{4} - \frac{3}{4} = 3.500 s = \frac{17}{4} + \frac{3}{4} = 5
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.