Solve for p
p>\frac{13}{34}
Share
Copied to clipboard
-8p+6\left(6-15p\right)<4p-3
Multiply both sides of the equation by -2. Since -2 is negative, the inequality direction is changed.
-8p+36-90p<4p-3
Use the distributive property to multiply 6 by 6-15p.
-98p+36<4p-3
Combine -8p and -90p to get -98p.
-98p+36-4p<-3
Subtract 4p from both sides.
-102p+36<-3
Combine -98p and -4p to get -102p.
-102p<-3-36
Subtract 36 from both sides.
-102p<-39
Subtract 36 from -3 to get -39.
p>\frac{-39}{-102}
Divide both sides by -102. Since -102 is negative, the inequality direction is changed.
p>\frac{13}{34}
Reduce the fraction \frac{-39}{-102} to lowest terms by extracting and canceling out -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}