Solve for p
p\in \left(0,4\right)
Share
Copied to clipboard
4p\left(-p\right)+16p>0
Use the distributive property to multiply 4p by -p+4.
-4pp+16p>0
Multiply 4 and -1 to get -4.
-4p^{2}+16p>0
Multiply p and p to get p^{2}.
4p^{2}-16p<0
Multiply the inequality by -1 to make the coefficient of the highest power in -4p^{2}+16p positive. Since -1 is negative, the inequality direction is changed.
4p\left(p-4\right)<0
Factor out p.
p>0 p-4<0
For the product to be negative, p and p-4 have to be of the opposite signs. Consider the case when p is positive and p-4 is negative.
p\in \left(0,4\right)
The solution satisfying both inequalities is p\in \left(0,4\right).
p-4>0 p<0
Consider the case when p-4 is positive and p is negative.
p\in \emptyset
This is false for any p.
p\in \left(0,4\right)
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}