Solve for p
p=\sqrt{5}\approx 2.236067977
p=-\sqrt{5}\approx -2.236067977
Share
Copied to clipboard
4p^{2}=13+7
Add 7 to both sides.
4p^{2}=20
Add 13 and 7 to get 20.
p^{2}=\frac{20}{4}
Divide both sides by 4.
p^{2}=5
Divide 20 by 4 to get 5.
p=\sqrt{5} p=-\sqrt{5}
Take the square root of both sides of the equation.
4p^{2}-7-13=0
Subtract 13 from both sides.
4p^{2}-20=0
Subtract 13 from -7 to get -20.
p=\frac{0±\sqrt{0^{2}-4\times 4\left(-20\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 0 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{0±\sqrt{-4\times 4\left(-20\right)}}{2\times 4}
Square 0.
p=\frac{0±\sqrt{-16\left(-20\right)}}{2\times 4}
Multiply -4 times 4.
p=\frac{0±\sqrt{320}}{2\times 4}
Multiply -16 times -20.
p=\frac{0±8\sqrt{5}}{2\times 4}
Take the square root of 320.
p=\frac{0±8\sqrt{5}}{8}
Multiply 2 times 4.
p=\sqrt{5}
Now solve the equation p=\frac{0±8\sqrt{5}}{8} when ± is plus.
p=-\sqrt{5}
Now solve the equation p=\frac{0±8\sqrt{5}}{8} when ± is minus.
p=\sqrt{5} p=-\sqrt{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}