Solve for p
p = -\frac{5}{4} = -1\frac{1}{4} = -1.25
p=2
Share
Copied to clipboard
a+b=-3 ab=4\left(-10\right)=-40
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4p^{2}+ap+bp-10. To find a and b, set up a system to be solved.
1,-40 2,-20 4,-10 5,-8
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -40.
1-40=-39 2-20=-18 4-10=-6 5-8=-3
Calculate the sum for each pair.
a=-8 b=5
The solution is the pair that gives sum -3.
\left(4p^{2}-8p\right)+\left(5p-10\right)
Rewrite 4p^{2}-3p-10 as \left(4p^{2}-8p\right)+\left(5p-10\right).
4p\left(p-2\right)+5\left(p-2\right)
Factor out 4p in the first and 5 in the second group.
\left(p-2\right)\left(4p+5\right)
Factor out common term p-2 by using distributive property.
p=2 p=-\frac{5}{4}
To find equation solutions, solve p-2=0 and 4p+5=0.
4p^{2}-3p-10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 4\left(-10\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -3 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-3\right)±\sqrt{9-4\times 4\left(-10\right)}}{2\times 4}
Square -3.
p=\frac{-\left(-3\right)±\sqrt{9-16\left(-10\right)}}{2\times 4}
Multiply -4 times 4.
p=\frac{-\left(-3\right)±\sqrt{9+160}}{2\times 4}
Multiply -16 times -10.
p=\frac{-\left(-3\right)±\sqrt{169}}{2\times 4}
Add 9 to 160.
p=\frac{-\left(-3\right)±13}{2\times 4}
Take the square root of 169.
p=\frac{3±13}{2\times 4}
The opposite of -3 is 3.
p=\frac{3±13}{8}
Multiply 2 times 4.
p=\frac{16}{8}
Now solve the equation p=\frac{3±13}{8} when ± is plus. Add 3 to 13.
p=2
Divide 16 by 8.
p=-\frac{10}{8}
Now solve the equation p=\frac{3±13}{8} when ± is minus. Subtract 13 from 3.
p=-\frac{5}{4}
Reduce the fraction \frac{-10}{8} to lowest terms by extracting and canceling out 2.
p=2 p=-\frac{5}{4}
The equation is now solved.
4p^{2}-3p-10=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4p^{2}-3p-10-\left(-10\right)=-\left(-10\right)
Add 10 to both sides of the equation.
4p^{2}-3p=-\left(-10\right)
Subtracting -10 from itself leaves 0.
4p^{2}-3p=10
Subtract -10 from 0.
\frac{4p^{2}-3p}{4}=\frac{10}{4}
Divide both sides by 4.
p^{2}-\frac{3}{4}p=\frac{10}{4}
Dividing by 4 undoes the multiplication by 4.
p^{2}-\frac{3}{4}p=\frac{5}{2}
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
p^{2}-\frac{3}{4}p+\left(-\frac{3}{8}\right)^{2}=\frac{5}{2}+\left(-\frac{3}{8}\right)^{2}
Divide -\frac{3}{4}, the coefficient of the x term, by 2 to get -\frac{3}{8}. Then add the square of -\frac{3}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}-\frac{3}{4}p+\frac{9}{64}=\frac{5}{2}+\frac{9}{64}
Square -\frac{3}{8} by squaring both the numerator and the denominator of the fraction.
p^{2}-\frac{3}{4}p+\frac{9}{64}=\frac{169}{64}
Add \frac{5}{2} to \frac{9}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(p-\frac{3}{8}\right)^{2}=\frac{169}{64}
Factor p^{2}-\frac{3}{4}p+\frac{9}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{3}{8}\right)^{2}}=\sqrt{\frac{169}{64}}
Take the square root of both sides of the equation.
p-\frac{3}{8}=\frac{13}{8} p-\frac{3}{8}=-\frac{13}{8}
Simplify.
p=2 p=-\frac{5}{4}
Add \frac{3}{8} to both sides of the equation.
x ^ 2 -\frac{3}{4}x -\frac{5}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 4
r + s = \frac{3}{4} rs = -\frac{5}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{3}{8} - u s = \frac{3}{8} + u
Two numbers r and s sum up to \frac{3}{4} exactly when the average of the two numbers is \frac{1}{2}*\frac{3}{4} = \frac{3}{8}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{3}{8} - u) (\frac{3}{8} + u) = -\frac{5}{2}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{5}{2}
\frac{9}{64} - u^2 = -\frac{5}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{5}{2}-\frac{9}{64} = -\frac{169}{64}
Simplify the expression by subtracting \frac{9}{64} on both sides
u^2 = \frac{169}{64} u = \pm\sqrt{\frac{169}{64}} = \pm \frac{13}{8}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{3}{8} - \frac{13}{8} = -1.250 s = \frac{3}{8} + \frac{13}{8} = 2
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}