Solve for p (complex solution)
p=\sqrt{194}-15\approx -1.071611723
p=-\left(\sqrt{194}+15\right)\approx -28.928388277
Solve for p
p=\sqrt{194}-15\approx -1.071611723
p=-\sqrt{194}-15\approx -28.928388277
Share
Copied to clipboard
4p^{2}+120p=-124
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4p^{2}+120p-\left(-124\right)=-124-\left(-124\right)
Add 124 to both sides of the equation.
4p^{2}+120p-\left(-124\right)=0
Subtracting -124 from itself leaves 0.
4p^{2}+120p+124=0
Subtract -124 from 0.
p=\frac{-120±\sqrt{120^{2}-4\times 4\times 124}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 120 for b, and 124 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-120±\sqrt{14400-4\times 4\times 124}}{2\times 4}
Square 120.
p=\frac{-120±\sqrt{14400-16\times 124}}{2\times 4}
Multiply -4 times 4.
p=\frac{-120±\sqrt{14400-1984}}{2\times 4}
Multiply -16 times 124.
p=\frac{-120±\sqrt{12416}}{2\times 4}
Add 14400 to -1984.
p=\frac{-120±8\sqrt{194}}{2\times 4}
Take the square root of 12416.
p=\frac{-120±8\sqrt{194}}{8}
Multiply 2 times 4.
p=\frac{8\sqrt{194}-120}{8}
Now solve the equation p=\frac{-120±8\sqrt{194}}{8} when ± is plus. Add -120 to 8\sqrt{194}.
p=\sqrt{194}-15
Divide -120+8\sqrt{194} by 8.
p=\frac{-8\sqrt{194}-120}{8}
Now solve the equation p=\frac{-120±8\sqrt{194}}{8} when ± is minus. Subtract 8\sqrt{194} from -120.
p=-\sqrt{194}-15
Divide -120-8\sqrt{194} by 8.
p=\sqrt{194}-15 p=-\sqrt{194}-15
The equation is now solved.
4p^{2}+120p=-124
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4p^{2}+120p}{4}=-\frac{124}{4}
Divide both sides by 4.
p^{2}+\frac{120}{4}p=-\frac{124}{4}
Dividing by 4 undoes the multiplication by 4.
p^{2}+30p=-\frac{124}{4}
Divide 120 by 4.
p^{2}+30p=-31
Divide -124 by 4.
p^{2}+30p+15^{2}=-31+15^{2}
Divide 30, the coefficient of the x term, by 2 to get 15. Then add the square of 15 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}+30p+225=-31+225
Square 15.
p^{2}+30p+225=194
Add -31 to 225.
\left(p+15\right)^{2}=194
Factor p^{2}+30p+225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p+15\right)^{2}}=\sqrt{194}
Take the square root of both sides of the equation.
p+15=\sqrt{194} p+15=-\sqrt{194}
Simplify.
p=\sqrt{194}-15 p=-\sqrt{194}-15
Subtract 15 from both sides of the equation.
4p^{2}+120p=-124
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4p^{2}+120p-\left(-124\right)=-124-\left(-124\right)
Add 124 to both sides of the equation.
4p^{2}+120p-\left(-124\right)=0
Subtracting -124 from itself leaves 0.
4p^{2}+120p+124=0
Subtract -124 from 0.
p=\frac{-120±\sqrt{120^{2}-4\times 4\times 124}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 120 for b, and 124 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-120±\sqrt{14400-4\times 4\times 124}}{2\times 4}
Square 120.
p=\frac{-120±\sqrt{14400-16\times 124}}{2\times 4}
Multiply -4 times 4.
p=\frac{-120±\sqrt{14400-1984}}{2\times 4}
Multiply -16 times 124.
p=\frac{-120±\sqrt{12416}}{2\times 4}
Add 14400 to -1984.
p=\frac{-120±8\sqrt{194}}{2\times 4}
Take the square root of 12416.
p=\frac{-120±8\sqrt{194}}{8}
Multiply 2 times 4.
p=\frac{8\sqrt{194}-120}{8}
Now solve the equation p=\frac{-120±8\sqrt{194}}{8} when ± is plus. Add -120 to 8\sqrt{194}.
p=\sqrt{194}-15
Divide -120+8\sqrt{194} by 8.
p=\frac{-8\sqrt{194}-120}{8}
Now solve the equation p=\frac{-120±8\sqrt{194}}{8} when ± is minus. Subtract 8\sqrt{194} from -120.
p=-\sqrt{194}-15
Divide -120-8\sqrt{194} by 8.
p=\sqrt{194}-15 p=-\sqrt{194}-15
The equation is now solved.
4p^{2}+120p=-124
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4p^{2}+120p}{4}=-\frac{124}{4}
Divide both sides by 4.
p^{2}+\frac{120}{4}p=-\frac{124}{4}
Dividing by 4 undoes the multiplication by 4.
p^{2}+30p=-\frac{124}{4}
Divide 120 by 4.
p^{2}+30p=-31
Divide -124 by 4.
p^{2}+30p+15^{2}=-31+15^{2}
Divide 30, the coefficient of the x term, by 2 to get 15. Then add the square of 15 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}+30p+225=-31+225
Square 15.
p^{2}+30p+225=194
Add -31 to 225.
\left(p+15\right)^{2}=194
Factor p^{2}+30p+225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p+15\right)^{2}}=\sqrt{194}
Take the square root of both sides of the equation.
p+15=\sqrt{194} p+15=-\sqrt{194}
Simplify.
p=\sqrt{194}-15 p=-\sqrt{194}-15
Subtract 15 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}