Solve for n
n\in \left(-\frac{\sqrt{611}}{13},\frac{\sqrt{611}}{13}\right)
Share
Copied to clipboard
4n^{2}-56n^{2}+188>0
Use the distributive property to multiply -4 by 14n^{2}-47.
-52n^{2}+188>0
Combine 4n^{2} and -56n^{2} to get -52n^{2}.
52n^{2}-188<0
Multiply the inequality by -1 to make the coefficient of the highest power in -52n^{2}+188 positive. Since -1 is negative, the inequality direction is changed.
n^{2}<\frac{47}{13}
Add \frac{47}{13} to both sides.
n^{2}<\left(\frac{\sqrt{611}}{13}\right)^{2}
Calculate the square root of \frac{47}{13} and get \frac{\sqrt{611}}{13}. Rewrite \frac{47}{13} as \left(\frac{\sqrt{611}}{13}\right)^{2}.
|n|<\frac{\sqrt{611}}{13}
Inequality holds for |n|<\frac{\sqrt{611}}{13}.
n\in \left(-\frac{\sqrt{611}}{13},\frac{\sqrt{611}}{13}\right)
Rewrite |n|<\frac{\sqrt{611}}{13} as n\in \left(-\frac{\sqrt{611}}{13},\frac{\sqrt{611}}{13}\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}