Solve for n
n = \frac{\sqrt{5} + 5}{4} \approx 1.809016994
n=\frac{5-\sqrt{5}}{4}\approx 0.690983006
Share
Copied to clipboard
4n^{2}-10n+3=-2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4n^{2}-10n+3-\left(-2\right)=-2-\left(-2\right)
Add 2 to both sides of the equation.
4n^{2}-10n+3-\left(-2\right)=0
Subtracting -2 from itself leaves 0.
4n^{2}-10n+5=0
Subtract -2 from 3.
n=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 4\times 5}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -10 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-10\right)±\sqrt{100-4\times 4\times 5}}{2\times 4}
Square -10.
n=\frac{-\left(-10\right)±\sqrt{100-16\times 5}}{2\times 4}
Multiply -4 times 4.
n=\frac{-\left(-10\right)±\sqrt{100-80}}{2\times 4}
Multiply -16 times 5.
n=\frac{-\left(-10\right)±\sqrt{20}}{2\times 4}
Add 100 to -80.
n=\frac{-\left(-10\right)±2\sqrt{5}}{2\times 4}
Take the square root of 20.
n=\frac{10±2\sqrt{5}}{2\times 4}
The opposite of -10 is 10.
n=\frac{10±2\sqrt{5}}{8}
Multiply 2 times 4.
n=\frac{2\sqrt{5}+10}{8}
Now solve the equation n=\frac{10±2\sqrt{5}}{8} when ± is plus. Add 10 to 2\sqrt{5}.
n=\frac{\sqrt{5}+5}{4}
Divide 10+2\sqrt{5} by 8.
n=\frac{10-2\sqrt{5}}{8}
Now solve the equation n=\frac{10±2\sqrt{5}}{8} when ± is minus. Subtract 2\sqrt{5} from 10.
n=\frac{5-\sqrt{5}}{4}
Divide 10-2\sqrt{5} by 8.
n=\frac{\sqrt{5}+5}{4} n=\frac{5-\sqrt{5}}{4}
The equation is now solved.
4n^{2}-10n+3=-2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4n^{2}-10n+3-3=-2-3
Subtract 3 from both sides of the equation.
4n^{2}-10n=-2-3
Subtracting 3 from itself leaves 0.
4n^{2}-10n=-5
Subtract 3 from -2.
\frac{4n^{2}-10n}{4}=-\frac{5}{4}
Divide both sides by 4.
n^{2}+\left(-\frac{10}{4}\right)n=-\frac{5}{4}
Dividing by 4 undoes the multiplication by 4.
n^{2}-\frac{5}{2}n=-\frac{5}{4}
Reduce the fraction \frac{-10}{4} to lowest terms by extracting and canceling out 2.
n^{2}-\frac{5}{2}n+\left(-\frac{5}{4}\right)^{2}=-\frac{5}{4}+\left(-\frac{5}{4}\right)^{2}
Divide -\frac{5}{2}, the coefficient of the x term, by 2 to get -\frac{5}{4}. Then add the square of -\frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{5}{2}n+\frac{25}{16}=-\frac{5}{4}+\frac{25}{16}
Square -\frac{5}{4} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{5}{2}n+\frac{25}{16}=\frac{5}{16}
Add -\frac{5}{4} to \frac{25}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n-\frac{5}{4}\right)^{2}=\frac{5}{16}
Factor n^{2}-\frac{5}{2}n+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{5}{4}\right)^{2}}=\sqrt{\frac{5}{16}}
Take the square root of both sides of the equation.
n-\frac{5}{4}=\frac{\sqrt{5}}{4} n-\frac{5}{4}=-\frac{\sqrt{5}}{4}
Simplify.
n=\frac{\sqrt{5}+5}{4} n=\frac{5-\sqrt{5}}{4}
Add \frac{5}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}