Solve for m
m=-\frac{k}{2}+\frac{1}{4}+\frac{65}{4k}
k\neq 0
Solve for k
k=\frac{\sqrt{16m^{2}-8m+521}}{4}-m+\frac{1}{4}
k=-\frac{\sqrt{16m^{2}-8m+521}}{4}-m+\frac{1}{4}
Share
Copied to clipboard
4mk-k=65-2k^{2}
Subtract 2k^{2} from both sides.
4mk=65-2k^{2}+k
Add k to both sides.
4km=65+k-2k^{2}
The equation is in standard form.
\frac{4km}{4k}=\frac{65+k-2k^{2}}{4k}
Divide both sides by 4k.
m=\frac{65+k-2k^{2}}{4k}
Dividing by 4k undoes the multiplication by 4k.
m=-\frac{k}{2}+\frac{1}{4}+\frac{65}{4k}
Divide 65-2k^{2}+k by 4k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}