Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

4m^{2}-2m-2=3
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4m^{2}-2m-2-3=3-3
Subtract 3 from both sides of the equation.
4m^{2}-2m-2-3=0
Subtracting 3 from itself leaves 0.
4m^{2}-2m-5=0
Subtract 3 from -2.
m=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 4\left(-5\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -2 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-2\right)±\sqrt{4-4\times 4\left(-5\right)}}{2\times 4}
Square -2.
m=\frac{-\left(-2\right)±\sqrt{4-16\left(-5\right)}}{2\times 4}
Multiply -4 times 4.
m=\frac{-\left(-2\right)±\sqrt{4+80}}{2\times 4}
Multiply -16 times -5.
m=\frac{-\left(-2\right)±\sqrt{84}}{2\times 4}
Add 4 to 80.
m=\frac{-\left(-2\right)±2\sqrt{21}}{2\times 4}
Take the square root of 84.
m=\frac{2±2\sqrt{21}}{2\times 4}
The opposite of -2 is 2.
m=\frac{2±2\sqrt{21}}{8}
Multiply 2 times 4.
m=\frac{2\sqrt{21}+2}{8}
Now solve the equation m=\frac{2±2\sqrt{21}}{8} when ± is plus. Add 2 to 2\sqrt{21}.
m=\frac{\sqrt{21}+1}{4}
Divide 2+2\sqrt{21} by 8.
m=\frac{2-2\sqrt{21}}{8}
Now solve the equation m=\frac{2±2\sqrt{21}}{8} when ± is minus. Subtract 2\sqrt{21} from 2.
m=\frac{1-\sqrt{21}}{4}
Divide 2-2\sqrt{21} by 8.
m=\frac{\sqrt{21}+1}{4} m=\frac{1-\sqrt{21}}{4}
The equation is now solved.
4m^{2}-2m-2=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4m^{2}-2m-2-\left(-2\right)=3-\left(-2\right)
Add 2 to both sides of the equation.
4m^{2}-2m=3-\left(-2\right)
Subtracting -2 from itself leaves 0.
4m^{2}-2m=5
Subtract -2 from 3.
\frac{4m^{2}-2m}{4}=\frac{5}{4}
Divide both sides by 4.
m^{2}+\left(-\frac{2}{4}\right)m=\frac{5}{4}
Dividing by 4 undoes the multiplication by 4.
m^{2}-\frac{1}{2}m=\frac{5}{4}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
m^{2}-\frac{1}{2}m+\left(-\frac{1}{4}\right)^{2}=\frac{5}{4}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-\frac{1}{2}m+\frac{1}{16}=\frac{5}{4}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
m^{2}-\frac{1}{2}m+\frac{1}{16}=\frac{21}{16}
Add \frac{5}{4} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m-\frac{1}{4}\right)^{2}=\frac{21}{16}
Factor m^{2}-\frac{1}{2}m+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{1}{4}\right)^{2}}=\sqrt{\frac{21}{16}}
Take the square root of both sides of the equation.
m-\frac{1}{4}=\frac{\sqrt{21}}{4} m-\frac{1}{4}=-\frac{\sqrt{21}}{4}
Simplify.
m=\frac{\sqrt{21}+1}{4} m=\frac{1-\sqrt{21}}{4}
Add \frac{1}{4} to both sides of the equation.