Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4\left(m^{2}-4m\right)
Factor out 4.
m\left(m-4\right)
Consider m^{2}-4m. Factor out m.
4m\left(m-4\right)
Rewrite the complete factored expression.
4m^{2}-16m=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
m=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-16\right)±16}{2\times 4}
Take the square root of \left(-16\right)^{2}.
m=\frac{16±16}{2\times 4}
The opposite of -16 is 16.
m=\frac{16±16}{8}
Multiply 2 times 4.
m=\frac{32}{8}
Now solve the equation m=\frac{16±16}{8} when ± is plus. Add 16 to 16.
m=4
Divide 32 by 8.
m=\frac{0}{8}
Now solve the equation m=\frac{16±16}{8} when ± is minus. Subtract 16 from 16.
m=0
Divide 0 by 8.
4m^{2}-16m=4\left(m-4\right)m
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 4 for x_{1} and 0 for x_{2}.