Solve for m
m=2
m=4
Share
Copied to clipboard
4m^{2}-16=12\left(m^{2}-4m+4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-2\right)^{2}.
4m^{2}-16=12m^{2}-48m+48
Use the distributive property to multiply 12 by m^{2}-4m+4.
4m^{2}-16-12m^{2}=-48m+48
Subtract 12m^{2} from both sides.
-8m^{2}-16=-48m+48
Combine 4m^{2} and -12m^{2} to get -8m^{2}.
-8m^{2}-16+48m=48
Add 48m to both sides.
-8m^{2}-16+48m-48=0
Subtract 48 from both sides.
-8m^{2}-64+48m=0
Subtract 48 from -16 to get -64.
-m^{2}-8+6m=0
Divide both sides by 8.
-m^{2}+6m-8=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=6 ab=-\left(-8\right)=8
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -m^{2}+am+bm-8. To find a and b, set up a system to be solved.
1,8 2,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 8.
1+8=9 2+4=6
Calculate the sum for each pair.
a=4 b=2
The solution is the pair that gives sum 6.
\left(-m^{2}+4m\right)+\left(2m-8\right)
Rewrite -m^{2}+6m-8 as \left(-m^{2}+4m\right)+\left(2m-8\right).
-m\left(m-4\right)+2\left(m-4\right)
Factor out -m in the first and 2 in the second group.
\left(m-4\right)\left(-m+2\right)
Factor out common term m-4 by using distributive property.
m=4 m=2
To find equation solutions, solve m-4=0 and -m+2=0.
4m^{2}-16=12\left(m^{2}-4m+4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-2\right)^{2}.
4m^{2}-16=12m^{2}-48m+48
Use the distributive property to multiply 12 by m^{2}-4m+4.
4m^{2}-16-12m^{2}=-48m+48
Subtract 12m^{2} from both sides.
-8m^{2}-16=-48m+48
Combine 4m^{2} and -12m^{2} to get -8m^{2}.
-8m^{2}-16+48m=48
Add 48m to both sides.
-8m^{2}-16+48m-48=0
Subtract 48 from both sides.
-8m^{2}-64+48m=0
Subtract 48 from -16 to get -64.
-8m^{2}+48m-64=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-48±\sqrt{48^{2}-4\left(-8\right)\left(-64\right)}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 48 for b, and -64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-48±\sqrt{2304-4\left(-8\right)\left(-64\right)}}{2\left(-8\right)}
Square 48.
m=\frac{-48±\sqrt{2304+32\left(-64\right)}}{2\left(-8\right)}
Multiply -4 times -8.
m=\frac{-48±\sqrt{2304-2048}}{2\left(-8\right)}
Multiply 32 times -64.
m=\frac{-48±\sqrt{256}}{2\left(-8\right)}
Add 2304 to -2048.
m=\frac{-48±16}{2\left(-8\right)}
Take the square root of 256.
m=\frac{-48±16}{-16}
Multiply 2 times -8.
m=-\frac{32}{-16}
Now solve the equation m=\frac{-48±16}{-16} when ± is plus. Add -48 to 16.
m=2
Divide -32 by -16.
m=-\frac{64}{-16}
Now solve the equation m=\frac{-48±16}{-16} when ± is minus. Subtract 16 from -48.
m=4
Divide -64 by -16.
m=2 m=4
The equation is now solved.
4m^{2}-16=12\left(m^{2}-4m+4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-2\right)^{2}.
4m^{2}-16=12m^{2}-48m+48
Use the distributive property to multiply 12 by m^{2}-4m+4.
4m^{2}-16-12m^{2}=-48m+48
Subtract 12m^{2} from both sides.
-8m^{2}-16=-48m+48
Combine 4m^{2} and -12m^{2} to get -8m^{2}.
-8m^{2}-16+48m=48
Add 48m to both sides.
-8m^{2}+48m=48+16
Add 16 to both sides.
-8m^{2}+48m=64
Add 48 and 16 to get 64.
\frac{-8m^{2}+48m}{-8}=\frac{64}{-8}
Divide both sides by -8.
m^{2}+\frac{48}{-8}m=\frac{64}{-8}
Dividing by -8 undoes the multiplication by -8.
m^{2}-6m=\frac{64}{-8}
Divide 48 by -8.
m^{2}-6m=-8
Divide 64 by -8.
m^{2}-6m+\left(-3\right)^{2}=-8+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-6m+9=-8+9
Square -3.
m^{2}-6m+9=1
Add -8 to 9.
\left(m-3\right)^{2}=1
Factor m^{2}-6m+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-3\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
m-3=1 m-3=-1
Simplify.
m=4 m=2
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}