Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

4m^{2}-12m-72>0
Use the distributive property to multiply -12 by m+6.
4m^{2}-12m-72=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
m=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\left(-72\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 4 for a, -12 for b, and -72 for c in the quadratic formula.
m=\frac{12±36}{8}
Do the calculations.
m=6 m=-3
Solve the equation m=\frac{12±36}{8} when ± is plus and when ± is minus.
4\left(m-6\right)\left(m+3\right)>0
Rewrite the inequality by using the obtained solutions.
m-6<0 m+3<0
For the product to be positive, m-6 and m+3 have to be both negative or both positive. Consider the case when m-6 and m+3 are both negative.
m<-3
The solution satisfying both inequalities is m<-3.
m+3>0 m-6>0
Consider the case when m-6 and m+3 are both positive.
m>6
The solution satisfying both inequalities is m>6.
m<-3\text{; }m>6
The final solution is the union of the obtained solutions.