Solve for k
k = \frac{3}{2} = 1\frac{1}{2} = 1.5
k = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Share
Copied to clipboard
\left(2k-3\right)\left(2k+3\right)=0
Consider 4k^{2}-9. Rewrite 4k^{2}-9 as \left(2k\right)^{2}-3^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
k=\frac{3}{2} k=-\frac{3}{2}
To find equation solutions, solve 2k-3=0 and 2k+3=0.
4k^{2}=9
Add 9 to both sides. Anything plus zero gives itself.
k^{2}=\frac{9}{4}
Divide both sides by 4.
k=\frac{3}{2} k=-\frac{3}{2}
Take the square root of both sides of the equation.
4k^{2}-9=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
k=\frac{0±\sqrt{0^{2}-4\times 4\left(-9\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 0 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{0±\sqrt{-4\times 4\left(-9\right)}}{2\times 4}
Square 0.
k=\frac{0±\sqrt{-16\left(-9\right)}}{2\times 4}
Multiply -4 times 4.
k=\frac{0±\sqrt{144}}{2\times 4}
Multiply -16 times -9.
k=\frac{0±12}{2\times 4}
Take the square root of 144.
k=\frac{0±12}{8}
Multiply 2 times 4.
k=\frac{3}{2}
Now solve the equation k=\frac{0±12}{8} when ± is plus. Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
k=-\frac{3}{2}
Now solve the equation k=\frac{0±12}{8} when ± is minus. Reduce the fraction \frac{-12}{8} to lowest terms by extracting and canceling out 4.
k=\frac{3}{2} k=-\frac{3}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}