Factor
\left(2k-5\right)\left(2k+1\right)
Evaluate
\left(2k-5\right)\left(2k+1\right)
Share
Copied to clipboard
a+b=-8 ab=4\left(-5\right)=-20
Factor the expression by grouping. First, the expression needs to be rewritten as 4k^{2}+ak+bk-5. To find a and b, set up a system to be solved.
1,-20 2,-10 4,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -20.
1-20=-19 2-10=-8 4-5=-1
Calculate the sum for each pair.
a=-10 b=2
The solution is the pair that gives sum -8.
\left(4k^{2}-10k\right)+\left(2k-5\right)
Rewrite 4k^{2}-8k-5 as \left(4k^{2}-10k\right)+\left(2k-5\right).
2k\left(2k-5\right)+2k-5
Factor out 2k in 4k^{2}-10k.
\left(2k-5\right)\left(2k+1\right)
Factor out common term 2k-5 by using distributive property.
4k^{2}-8k-5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
k=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 4\left(-5\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-\left(-8\right)±\sqrt{64-4\times 4\left(-5\right)}}{2\times 4}
Square -8.
k=\frac{-\left(-8\right)±\sqrt{64-16\left(-5\right)}}{2\times 4}
Multiply -4 times 4.
k=\frac{-\left(-8\right)±\sqrt{64+80}}{2\times 4}
Multiply -16 times -5.
k=\frac{-\left(-8\right)±\sqrt{144}}{2\times 4}
Add 64 to 80.
k=\frac{-\left(-8\right)±12}{2\times 4}
Take the square root of 144.
k=\frac{8±12}{2\times 4}
The opposite of -8 is 8.
k=\frac{8±12}{8}
Multiply 2 times 4.
k=\frac{20}{8}
Now solve the equation k=\frac{8±12}{8} when ± is plus. Add 8 to 12.
k=\frac{5}{2}
Reduce the fraction \frac{20}{8} to lowest terms by extracting and canceling out 4.
k=-\frac{4}{8}
Now solve the equation k=\frac{8±12}{8} when ± is minus. Subtract 12 from 8.
k=-\frac{1}{2}
Reduce the fraction \frac{-4}{8} to lowest terms by extracting and canceling out 4.
4k^{2}-8k-5=4\left(k-\frac{5}{2}\right)\left(k-\left(-\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{2} for x_{1} and -\frac{1}{2} for x_{2}.
4k^{2}-8k-5=4\left(k-\frac{5}{2}\right)\left(k+\frac{1}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
4k^{2}-8k-5=4\times \frac{2k-5}{2}\left(k+\frac{1}{2}\right)
Subtract \frac{5}{2} from k by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
4k^{2}-8k-5=4\times \frac{2k-5}{2}\times \frac{2k+1}{2}
Add \frac{1}{2} to k by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
4k^{2}-8k-5=4\times \frac{\left(2k-5\right)\left(2k+1\right)}{2\times 2}
Multiply \frac{2k-5}{2} times \frac{2k+1}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
4k^{2}-8k-5=4\times \frac{\left(2k-5\right)\left(2k+1\right)}{4}
Multiply 2 times 2.
4k^{2}-8k-5=\left(2k-5\right)\left(2k+1\right)
Cancel out 4, the greatest common factor in 4 and 4.
x ^ 2 -2x -\frac{5}{4} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 4
r + s = 2 rs = -\frac{5}{4}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 1 - u s = 1 + u
Two numbers r and s sum up to 2 exactly when the average of the two numbers is \frac{1}{2}*2 = 1. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(1 - u) (1 + u) = -\frac{5}{4}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{5}{4}
1 - u^2 = -\frac{5}{4}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{5}{4}-1 = -\frac{9}{4}
Simplify the expression by subtracting 1 on both sides
u^2 = \frac{9}{4} u = \pm\sqrt{\frac{9}{4}} = \pm \frac{3}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =1 - \frac{3}{2} = -0.500 s = 1 + \frac{3}{2} = 2.500
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}